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Abstract
PortAudio is an open source 'C' language API and
library for implementing cross-platform real-time
audio applications. This paper describes recent
additions to the PortAudio API designed to assist in
implementing synchronisation between real-time
audio and other time-based data such as MIDI and
computer graphics. Examples are presented that
illustrate synchronisation of a graphical display to
real time audio, low jitter MIDI triggering of
software synthesized audio, and synchronising
software synthesized audio to an external time source
such as MIDI clock. Some of the challenges of
implementing the PortAudio synchronisation
infrastructure on Microsoft® Windows® are discussed.

1 Introduction
PortAudio1 is an open source 'C' language API

(application programming interface) and library for
implementing real-time audio applications. PortAudio
is implemented as a layer on top of native platform
specific audio services and is available on a variety of
operating systems including Windows®, MacOS® (9
and X) and Linux®. PortAudio is used by computer
music systems such as Miller Puckette's Pd and the
author's AudioMulch®, and as a platform for
education in audio programming.

Over the past two years a range of revisions to the
PortAudio interface have been proposed.2 At the time
of writing these proposals had been approved and
were being implemented for the forthcoming V19
release. A number of the revisions are designed to
increase the ease and accuracy with which PortAudio
applications may generate audio synchronised to, or
triggered by, external sources. This paper explains
three common synchronisation scenarios and the
timing information they require. It then presents the
interfaces through which the PortAudio V19 API
provides this information. Finally, issues that have
been encountered while implementing these
interfaces on Microsoft Windows are discussed.

The three synchronisation scenarios considered
are: displaying visual feedback synchronised with
audio output; generating audio events under MIDI
control; and generating audio synchronised to an
external time-base such as periodic MIDI clock
messages.3  These scenarios were chosen because
they are commonly encountered in computer music
systems.

2 Buffering Basics
Before presenting the three synchronisation

scenarios, we introduce a conceptual model of real-
time audio generation. This model assumes a
'buffered' or  'block-wise' approach, where by a
continuous stream of audio samples is generated a
buffer at a time – each buffer consisting of a sequence
of audio samples. The audio subsystem periodically
calls upon the application to generate a buffer of
samples. For low-latency applications buffer lengths
are typically between 16 and 256 samples per
channel, although buffer lengths of thousands of
samples have not been uncommon on recent desktop
operating systems.

In order for  the audio hardware to play generated
audio buffers as a continuous stream of samples it is
necessary to use at least two buffers. This is so that
one buffer may be filled while the other is being read
by the audio hardware. The two buffer case, also
known as double buffering, is shown in figure 2.1 (a)
– when the playback position moves past the end of a
buffer, it is immediately returned to the application to
be refilled, once refilled it is placed at the end of the
buffer queue ready for future playback. A common,
although undesirable, feature of desktop operating
systems is that unpredictable delays may occur in
returning buffers to the application or requeuing
buffers with the audio driver. One practical method
for reducing the impact of such delays is to utilise
more than two buffers. Figure 2.1 (b) shows the case
of using three buffers. Using more than two buffers
increases audio latency but also increases reliability
by reducing the risk of 'buffer underrun', a condition
wherein the playback position reaches the end of one
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buffer without the next buffer being available for
playback.

As alluded to in the previous paragraph, at any
instant, the audio currently being played by the
hardware was generated by the application at some
time in the past. Conversely, at any instant, the audio
currently being generated will be played by the audio
hardware at some time in the future. The time taken
to generate each buffer must be the same as, or less
than, the time taken to play the buffer. On a general-
purpose computer, audio generation must proceed fast
enough to service all buffer generation requests in a
timely manner and also leave sufficient time for the
computer to perform other tasks such as updating the
user interface or reading and writing from and to disk.

Figure 2.2 shows an example of the temporal
relationship between audio generation tasks and audio
buffer playback in a well behaved triple buffered
system. The CPU time used to generate each buffer
stays below the buffer period (the time it takes to play
the buffer). The delay from when samples are
generated to when they are played is somewhere
between one and three buffer periods. Although this

delay cannot be known precisely, it has an upper
bound of one less than the total number of buffers and

is referred to here as the audio generation
latency.

The block-wise model described above is
just one way to organise audio buffering. Other
methods, such as a ring buffer with write and
playback pointers, allow for non-uniform block
sizes. Some audio APIs expose their internal
buffering model to the application programmer,
while others hide their internal buffering
model. PortAudio is built on top of host audio
APIs, and as such does not have the option of
dictating a buffering model. Instead it hides the
host's model of buffer organisation and simply
provides a callback requesting the application
to fill a buffer. In addition to a callback, the
V19 API offers an alternative: a write()
function which allows the client to enqueue
arbitrary-length buffers of samples. In both
cases the buffers may be of fixed or variable
length depending on the client's requirements.

The remainder of this paper uses the
conceptual model described in the first part
of this section, that is, of  the application
being called at regular intervals to generate
audio into a ring of fixed-length buffers.
Although some host APIs employ different
techniques, and/or the client may choose to
use variable-length buffers, the fixed buffer
size model provides a useful framework
with which to explain the synchronisation
concepts presented in the following sections.
Once understood, the concepts may easily
be extended to the variable sized buffer case
if necessary.

3 Synchronising Graphical
Display

The first scenario we will consider is the display
of visual feedback synchronised with generated
audio. The need for synchronised visual feedback
often arises in graphical user interfaces and may take
the form of real-time level indicators such as VU
meters and spectral analysers, or of playback position
indicators as seen in audio editors and music
sequencers. This scenario may also be considered as
an example of implementing audio-driven
synchronisation in visually dominated systems such
as video playback and interactive computer games,
although in practice it may not be practical to lock
such systems directly to the audio playback rate.

The central issue in synchronising a visual display
with generated audio is determining when a particular
audio event is going to emanate from the computer's

Figure 2.1 Using multiple buffers to generate a
continuous stream of audio samples

Figure 2.2 Time usage of an audio generation task
and relative playback time of corresponding audio
output buffers.
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audio hardware. In a well behaved system the audio
generation task will always precede playback of the
generated audio.

Figure 3.1 shows the relationship between an
audio generation task and the playback time of the
corresponding audio buffer. The figure also shows the
relationship between the time at which a specific
audio event within the buffer is generated and the
time at which it is played back. In this and later
examples, the figures show markers positioned
according to the assumption that every audio sample
takes equal time to generate, even though this may
not be the case in practice.

Both the time at which the audio task begins
generating a buffer, and the rate at which it generates
the buffer are uncertain, and as a result may not be
usefully applied to the goal of determining when the
audio event will emanate from the computer. On the
other hand, the playback rate (also known as the
sample rate) and each buffer's start time are known or
may be predicted with relative accuracy.

Figure 3.2 shows the temporal relationship
between a buffer start time and the offset of an event
within that buffer.  Given an event offset in samples
from beginning of the current buffer, its playback

time may be calculated as follows:

eventPlaybackTimeSeconds =
bufferStartTimeSeconds +
(eventOffsetSamples /
sampleRate)

As the audio generation task produces
events, or detects features of the generated
audio (such as VU level changes) it can
calculate the output time of these events
according to the above equation and post
them asynchronously to a display routine.

The relationship between the audio
generation task and a display task is shown
in figure 3.3. The display routine runs

periodically, checks the current time, and updates the
display according to recently received audio events
whose playback times are at or before the current
time.

In order for the above scheme to work, the audio
generation task must have access to the sample rate
and the buffer start time for each buffer. The display
task must have access to the current time according to
the same clock that is used to express the buffer start
times. The way in which PortAudio provides this
information is described in section 6.

4 Low-Jitter MIDI Triggered
Audio Generation

The second scenario we will consider is
generating low-jitter audio events triggered by
externally generated MIDI messages. This situation
may arise, for example, when implementing a
software synthesizer. The same technique can also be
applied to implementing low-jitter control by other
message based sources such as a mouse.

Figure 4.1 shows the relationship between a
MIDI reception task, such as a MIDI callback or
operating system queue, and the audio
generation task. MIDI events arrive
asynchronously and are later processed by the
audio generation task. Although the audio
generation task may theoretically access
received events at any time, it is most common
to process all events prior to commencing audio
generation for each buffer. Unless the audio
buffers are extremely short it is important to
calculate an appropriate offset  from the
beginning of the buffer for each event.  The
alternative is to quantize event onsets to buffer
boundaries, which will likely introduce
unwanted rhythmic artefacts.

Figure 4.2 shows the temporal relationship
between the reception time of MIDI events, the

Figure 3.1 Correspondence of generation time and output
time assuming constant CPU usage per generated sample.

Figure 3.2 The relationship between buffer start
time (the output time of the first sample in a
buffer), and an intra-buffer event offset

Figure 3.3 Visualised events are sent to the
display task as asynchronous messages
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execution time of the audio generation task, and the

playback time of generated audio buffers. The audio
generation task is only guaranteed to have access to
MIDI events that were received prior to the
commencement of the current buffer period.
Although more recent MIDI events may be available
(as is the case in the third period of figure 4.2, where
the task executes late enough to have access to an
event within the same buffer period) these events
should be retained for generating later buffers.

Given a set of MIDI events that are to be
synthesized within the current buffer, the offsets into
the buffer may be calculated as follows:

bufferOffsetSamples = sampleRate
    * ( receptionTimeSeconds -
(bufferStartTimeSeconds –
eventResponseLatencySeconds) )

The event response latency is the total duration of
all buffers in the buffer ring, or alternatively, the
audio generation latency (as defined in section 2) plus
one buffer period.

In order to implement the above low-jitter method
of synthesizing MIDI triggered audio events, the
audio generation task needs access to the buffer start
time, the event response latency and the sample rate.
The reception time of each MIDI event must be
available and expressed according to the same time
base used for the buffer start time. The way in which
PortAudio provides this information is described in
section 6.

5 Synchronising Generated
Audio with an External
MIDI Clock

The final scenario we will consider is
that of synchronising generated audio to an
external MIDI clock. Synchronising to an
external MIDI clock source is common
when multiple rhythmic generators, be they
software or hardware, are employed within
the same musical piece. Synchronising to
other clock sources such as MIDI Time
Code (MTC) or SMPTE linear time code is
common in film and video post production.
The concepts described below may be
equally applied to implementing these
forms of synchronisation.

The discussion here is limited to
determining the location of output clocks
(i.e. the MIDI clock phase ) in generated
audio buffers – this may be sufficient for
triggering a low-resolution MIDI sequence,
however more demanding applications,
such as continuous synchronisation of audio

playback to timecode, require the use of additional
techniques that may include high-resolution clock
reconstruction and continuous playback rate
variation. These techniques are beyond the scope of
the present paper.

Figure 5.1 shows the temporal relationships
between MIDI clock message reception times, output
times of predicted MIDI clocks, audio generation task
execution times, and generated audio buffer playback
times. For each audio buffer, the audio generation
task uses previously received MIDI clocks to predict
the MIDI clocks (or the continuous MIDI clock
phase). Note that the audio generation task has access
to all prior clocks, perhaps even clocks within the
current buffer period, and unlike the scenario
described in the previous section may make use of the
most recent clocks to increase the accuracy of the
prediction.

The MIDI clock rate and phase may be recovered
from recently received timestamped MIDI clock
messages using a number of techniques which vary in
accuracy and complexity. For example, the clock rate
may be determined by calculating the time between
adjacent clocks, and the phase may be derived either
directly from the reception time of the most recent
clock, or by using some form of jitter reduction, such
as averaging the phase of recently received clocks.
More accurate methods include taking a Least
Squares line of best fit through a window of recently
received clocks,4 or by employing an adaptive filter
such as a Kalman filter variant.5

Figure 4.1 MIDI events are sent to the audio
generation task as timestamped asynchronous
messages

Figure 4.2 Generation of audio events triggered by
MIDI input using a fixed event response latency
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Assuming that the received MIDI phase and rate
are known for some recent time point, the MIDI
phase at the beginning of an audio buffer may be
predicted by linear projection of the phase from the
known time point as follows:

predictedMIDIPhaseClocks =
knownPhaseClocks +
(bufferStartTimeSeconds –
knownTimeSeconds)
    * knownRateClocksPerSecond

In practice, the above calculation is not sufficient.
Potential variations in MIDI tempo and the inherent
timing instability of MIDI mean that it is unlikely that
MIDI phase predictions will be totally aligned from
one buffer to the next. As a consequence, calculating
the MIDI clock phase independently for each buffer
may introduce (possibly backwards jumping)
discontinuities. Therefore both recently received
clocks and the MIDI clock phase used for previously
generated audio buffers should be taken into account.
The MIDI clock phase should be smoothly modulated
to avoid discontinuities.

Implementing the MIDI clock synchronisation
technique described above relies on the audio
generation task having access to buffer start times and
sample rate, and to MIDI clock events timestamped

using the same time base as used for the
buffer start times. The way in which
PortAudio provides this information is
described in section 6.

The problem of synchronising generated
audio to an external clock may be restated
as implementing a phase-locked loop with a
delay element in the feedback path as shown
in figure 5.2. The presence of the delay
element makes the system prone to
overshoot and ringing. If latency can be
tolerated, or if the external clock source can
send clocks early, it may be preferable to
use a reactive method based on the
techniques described in section 4 rather than
the predictive approach described in this
section.

6 PortAudio Features
Supporting Synchronisation

The implementation techniques described in the
previous three sections each require specific timing
information. All of the techniques require buffer start
times and the sample rate. The MIDI triggered audio
scenario requires the event response latency. The
display scenario requires the current time, and the
MIDI triggered event and MIDI clock
synchronisation scenarios require timestamped MIDI
events. The interface for accessing this information
that has been proposed for the PortAudio V19 API is
described below.

PortAudio represents time measured in seconds
using a double-precision floating-point data type. The
double data type was chosen after considerable
deliberation because it provides sufficient resolution
to represent time with high-precision, may be
manipulated using numerical operators, and is a
standard part of the C and C++ languages. Other
representations with sufficient precision that were
considered either used compound data structures
which couldn't be manipulated numerically, or were
only available as platform specific language
extensions.

typedef double PaTime;

Figure 5.1 Generation of audio events
synchronised to a time base provided by incoming
MIDI clocks

phase comparator clock generation oscillator

delay

incoming MIDI clocks
predicted MIDI clocks

Figure 5.2 A phase-locked loop with a delay
element in the feedback path
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The playback time of each buffer is provided to
the audio generation callback through a pointer to a
PaStreamCallbackTimeInfo structure. The
outputBufferDacTime field contains the output
time of the first sample in the current buffer.

typedef struct PaStreamCallbackTimeInfo{
    PaTime inputBufferAdcTime;
    PaTime currentTime;
    PaTime outputBufferDacTime;
} PaStreamCallbackTimeInfo;

A stream's sample rate and latency may be
retrieved using the Pa_GetStreamInfo() function
which returns a pointer to a PaStreamInfo
structure:

typedef struct PaStreamInfo{
    int structVersion;
    PaTime inputLatency;
    PaTime outputLatency;
    double sampleRate;
} PaStreamInfo;

The current time is made available on a per-
stream basis through the Pa_GetStreamTime()
function. This function could be used directly to
timestamp incoming MIDI events, or to compute an
offset between the operating system MIDI timestamp
time base and the stream time base. Note that this
function has completely different behaviour to the
similarly named Pa_StreamTime() function that
was present in the V18 API.

7 Implementation Issues
This section discusses some of the issues that

have been encountered while implementing the
PortAudio features described in the previous section
under Microsoft Windows. Although some of these
issues may be unique to Windows, it is expected that
similar issues will arise on other platforms and that it
may be necessary to develop common infrastructure
to address them.

7.1 Sample Rate(s)
A sample rate is typically specified when opening

an audio stream, for example the CD sample rate
44100Hz. Most host audio APIs, with the notable
exception of OSS®,6 treat this as a nominal request
without regard for the actual sample rate of the audio
hardware. In practice it is not uncommon to observe
significant deviation from the nominal sample rate.
Table 7.1 shows measured sample rates for a
selection of consumer and professional sound cards
running at a nominal sample rate of 44100 Hz. The
measurements were made by averaging the data rate
over a ten minute period. Although this method does
not measure the actual sample rate, but rather the rate
relative to the system clock, it is a useful
measurement for the scenarios described in this paper
because they depend on the relationship between
system clock time and sound card clock. It is
interesting to note that studies which  compared
sound card sample rate differences using only sound
card clocks as time references produced similar
results.7, 8

sound card or audio chipset host API measured sample
rate (Hz)

Analog Devices SoundMAX MME 44099.7
Avance AC'97 MME 44105.4
Intel 810 MME 44102.0
RME Digi96 ASIO 44098.8
SB AWE 64 Gold MME 44106.1
SB Live #1 MME (kx drivers) 44110.4
SB Live #2 MME 44096.8
SB Live #3 DirectSound 44107.5
Turtle Beach Montego A3D MME 44092.0
M-Audio Audiophile 2496 MME 44098.8
VIA AC'97 #1 MME 44099.1
VIA AC'97 #2 DirectSound 44097.8

Table 7.1 Sample rate measurements from a sample of PC soundcards running at a nominal rate of 44100 Hz

These measurements should not be interpreted as
reflecting the precision of particular soundcard
brands, but rather as supporting the general claim that
observed sample rates deviate from nominal rates
enough to impact the syncronisation applications

described in this paper. If the nominal sample rate is
used for synchronisation calculations significant
errors may result. This is one reason PortAudio
provides an actual sample rate in the PaStreamInfo
structure. Measuring the actual sample rate accurately
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requires accurate buffer timestamps or, at a minimum,
access to an accurate high-resolution system clock.
As described below this is not an easy requirement to
fulfil.

7.2 One Shared Time-base (please)
One of the reasons PortAudio provides a separate

GetStreamTime() function for each stream,
rather than a single global GetTime() function is
that PortAudio supports multiple host APIs on some
platforms, and some of these APIs use different time
bases internally. For example, the Windows
multimedia timer is specified as the default time base
for ASIO®,9 however this timer only has millisecond
accuracy at best. PortAudio chooses to use the more
accurate Performance Counter timer for its MME
implementation, however the Performance Counter
has a documented 'feature' whereby it may jump
forward unpredictably.10 Another candidate for high-
resolution timing under Windows is the Pentium 'time
stamp counter', however this counter measures time
in clocks, so it is necessary to use one of the other
(inaccurate or unreliable) time sources to calibrate a
conversion into seconds.

The Windows MIDI API provides timestamps for
all received MIDI messages. However, the time base
for these timestamps is unspecified, so that
synchronising them with another time base is
difficult. The simplest solution is to discard the driver
supplied timestamps and re-stamp the events upon
reception with times returned by the
GetStreamTime() function. This solution is not
totally satisfactory as the original timestamps are
likely to be more accurate. A better solution would be
to employ an algorithm that can measure the offset
and skew between the MIDI driver time base and the
PortAudio stream time base and use these
measurements to convert between MIDI driver time
and PortAudio stream time.

7.3 Buffer Playback Times
The accuracy of buffer start time information

varies depending on the audio hardware and drivers
in use. Some host APIs such as ASIO and Apple's
CoreAudio11 directly provide this information to
PortAudio, while others do not – leading to additional
implementation effort in the PortAudio library.
Sometimes timing information is provided with
limited resolution, for example the default ASIO
buffer timestamps generated using the multimedia
timer have a best-case resolution of one millisecond –
this is significantly worse than the accuracy necessary
for implementing sample-level synchronisation. The
buffer playback times may also contain significant

jitter noise depending on the implementation quality
of the driver.

8 Future Work
At the time of writing, the features described in

section 6 have been implemented in the PortAudio
V19 implementations for the MME, DirectSound,
ASIO and ALSA host APIs, with the exception of the
sample rate feature, which is currently hard-wired to
the nominal sample rate. Implementing code to
supply the actual sample rate of running streams and
to improve the accuracy of buffer play back time
stamps by filtering operating system induced jitter
and quantization noise are currently a priority.

Developing techniques and code for resolving
multiple independent time bases such as the various
Windows system clocks described in section 7.3
would be very useful. This would allow PortAudio to
provide higher-resolution timing information  to the
computations described in this paper. Similar
techniques could be useful for synchronising driver
supplied MIDI event timestamps with a PortAudio
stream time base. A substantial body of literature
concerning clock synchronisation algorithms is
available to assist with this task,12,13,14 and the
problem of synchronising multiple time bases on a
single machine has been studied elsewhere.15

9 Conclusion
This paper has presented a conceptual framework

for analysing synchronisation scenarios in fixed
buffer size multiple-buffer real-time audio systems.
Three different synchronisation scenarios were
presented: synchronising a graphical display with
generated audio, low jitter generation of audio events
triggered from MIDI, and synchronising generated
audio to incoming MIDI clocks. The requirements of
these scenarios were established and the features of
the PortAudio API that support these scenarios were
presented. Some of the difficulties that arose while
implementing these features on Microsoft Windows
were discussed. It is hoped that this paper can provide
a starting point for PortAudio users and others faced
with the task of implementing media synchronisation
in their applications.
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