

INTERFACING REAL-TIME AUDIO AND FILE I/O

Ross Bencina

portaudio.com
rossbencina.com

rossb@audiomulch.com
@RossBencina

Example source code:
https://github.com/RossBencina/RealTimeFileStreaming

mailto:rossb@audiomulch.com
https://github.com/RossBencina/RealTimeFileStreaming

Q: How to stream audio data to/from file in
real-time without glitching?

Q: How to stream audio data to/from file in
real-time without glitching?

Two problems:

1. Real-time audio programming

2. Unavoidable file access delays

Real-time audio programming context

See also:
http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing

RTNRT

http://www.rossbencina.com/code/real-time-audio-programming-101-time-waits-for-nothing

“Real-Time Land”

Time constrained: must meet deadlines

Write code with deterministic time properties
(“real-time-safe”)

Limited programming model:

●Can't allocate memory (by normal means)

●Can't use locks (c.f. priority inversion)

●Can't call system APIs (in general, see above)

Unavoidable file access delays

File access takes an unpredictable amount of time
and is not real-time safe

Buffer management, hardware access queueing,
and performing I/O all take time.

Ballpark numbers:
~? network file access (pick a number)

~10ms+ for mechanical hard disks
~50us for SSD, plus ??? jitter, GC

Interlocking Concerns:

1. A buffering scheme that masks unpredictable
I/O latency

2. A real-time safe implementation that is portable
to mainstream operating systems

3. Design goals:
●Usable programming model for C/C++

●No busy-waiting
●Reliable/easy to reason about correctness

Outline for Rest of Talk

●Audio I/O and buffering model

●Message passing algorithm (high-level view)

●Implementation details

●Real-time-safe inter-thread communications
using lock free queues

●Caveats, discussion

Audio I/O and Buffering Model

Playback:

Recording:

Streaming playback algorithm
(see animation)

Participants:
Client Stream
Server (performs non-real-time-safe operations)
Requests
Data Blocks
Queues
File Handles
Threads

Process
Message Protocol (see later slide)

Threads in relation to application picture

Async File I/O Protocol Messages
OPEN_FILE (path, accessMode) ⇀ fileHandle | error

CLOSE_FILE fileHandle ⇀ ◦

READ_BLOCK (fileHandle, position) ⇀ dataBlock | error

RELEASE_READ_BLOCK (fileHandle, dataBlock) ⇀ ◦

ALLOCATE_WRITE_BLOCK (fileHandle, position)
 ⇀ dataBlock | error

COMMIT_MODIFIED_WRITE_BLOCK (fileHandle, dataBlock) ⇀ ◦

RELEASE_UNMODIFIED_WRITE_BLOCK (fileHandle, dataBlock) ⇀ ◦

Interlude: Linked Lists

Linked List

Last In First Out (LIFO) Stack

First In First Out (FIFO) “Tail Queue”

Two “next” pointers: same nodes, different lists

(end interlude)

On to the implementation...

Requirements:
●Allocating, deallocating, sending requests and receiving
replies must be real-time-safe.
• Server to process events in FIFO order. Clients may
receive replies in any order.

Desiderata:
• Support immediate disposal of streaming state, without
having to wait for pending replies.
• Real-time-safe construction and tear-down of stream
state.
• Create and destroy streams in any thread, allow stream
states to migrate between threads -- implies being able to
send requests and receive replies from any thread.

Requests (messages) are Linked List Nodes

struct Request {
Request *transitNext; // used by queues
Request *clientNext; // used by Stream
int requestType;
int resultStatus;
union {

size_t clientInt;
void *clientPtr;

};
union {

// message-specific fields...
DataBlock *dataBlock; // for example

};
};

src/FileIoRequest.h

Aside: transit queues in the algorithm

Freelist (LIFO)

Server Queue (FIFO)

Result Queue (?)

Similar to linked lists but implemented using
lock-free techniques – more later

Request Allocation/Deallocation

Requests are pre-allocated and stored in a freelist

To allocate a Request:

pop a Request off the freelist

To deallocate a Request:

push a Request onto the freelist

Client Stream Result Queue is a Request

(Recall: Server pushes requests onto the result
queue, Client pops them off.)

“Stream” objects are built out of linked Requests

All stream state is stored in the Request nodes.

Client Stream Algorithms

●Stream construction (bootstrapping)

●Prefetch queue maintenance (see paper)

●Stream destruction (highlighting async case)

Create Stream (bootstrapping)

Create Stream 1/4

Create Stream 2/4

Create Stream 3/4

Create Stream 4/4

Destroy Stream (with pending requests)

Destroy Stream (with pending requests) 1/3

Destroy Stream (with pending requests) 2/3

Destroy Stream (with pending requests) 3/3
●Result queue maintains a count of
pending requests

●Server knows how to clean up requests

●Server waits until all requests have been
returned before destroying the queue

How to make the queues real-time safe?

Definition: A lock-free algorithm has the property
that at least one thread makes global progress at
each execution step.

E.g. if two or more threads concurrently push or
pop from a lock-free queue, at least one makes
progress.

Assuming bounded contention we get time-
bounded completion of all threads. Has been
shown to be provably real-time safe (on
uniprocessor see Anderson et. al. 1997, waves
hands about multicore).

Main advantage over mutexes: avoids priority
inversion.

Use Lock-Free Queues for RT/NRT interface

Freelist: preallocate messages and store them in
a stack (MPMC)

Server queue: pop-all FIFO (MPSC)

Client result queue: pop-all relaxed order (SPSC)

Lock-Free queue algorithms: see paper

Implementation based on “IBM Freelist”, atomic
pop-all using XCHG, stack reversing.

●Single node struct for each message (simple,
similar to simple linked list).

●Result queue can be embedded in request (the
queue is just two pointers, no large/bounded

ringbuffers)

https://github.com/RossBencina/QueueWorld

+ mintomic for portable C++ atomic ops

https://github.com/RossBencina/QueueWorld

// lock-free pop-all stack:
struct Node { Node *next; };
struct Stack { Node *top; };

void init(Stack& s) { s.top = NULL; }

void push(Stack& s, Node *n, bool& wasEmpty) {
do {
Node *top = s.top;
n->next = top;
wasEmpty = (top==NULL);
// CAS: atomic compare-and-swap
// set s.top to n only if s.top == top
} while(!CAS(&s.top, top, n));

}

bool is_empty(Stack& s) { return (s.top==NULL); }

Node *pop_all(Stack& s) {
if (s.top==NULL) return; // don't modify if empty
// XCHG: atomic exchange
// set s.top to NULL, return old s.top
return XCHG(&s.top,NULL);

}

Recap on stated requirements...

Recap 1/2: Interlocking concerns:

1. A buffering scheme that masks unpredictable
I/O latency

2. A real-time safe implementation that is portable
to mainstream operating systems

3. Design goals:
●Usable programming model for C/C++

●No busy-waiting
●Reliable/easy to reason about correctness

Recap 2/2: Requirements:
●Allocating, deallocating, sending requests and receiving
replies must be real-time-safe.
• Server to process events in FIFO order. Clients may
receive replies in any order.

Desiderata:
• Support immediate disposal of streaming state, without
having to wait for pending replies.
• Real-time-safe construction and tear-down of stream
state.
• Create and destroy streams in any thread, allow stream
states to migrate between threads -- implies being able to
send requests and receive replies from any thread.

Caveats

As presented: simplistic synchronous server

problem: server won't deal well with multiple
streams (seek floods queue, need deadlines)

problem: haven't described how to parse sound
file headers. Easy, low-performance: do it

synchronously in server using libsndfile; Hard
high-performance: do it asynchronously in server.

Not ideal: Seeking and stream tear-down is O(N)
(each request in the prefetch queue has to be

processed individually by the client).

Various ways of “improving” the protocol:
●elide READ and RELEASE messages

●bulk operations, e.g. READ-N message
●delegate some stream operations to server:

move prefetch queue tear-down to server

Warning:
The queues used here are not strictly “wait-free.”

May not be appropriate for high-contention
scenarios (i.e. many concurrent threads).

Further research needed.

Future Work

This talk has focused on the client/server
interface. It turns out that implementing a high

performance server in this style is a lot more work.

In progress: Async interface to native file I/O,
caching and sharing file handles and data blocks
among multiple clients, prioritised and cancellable

requests, caching, data format conversion, etc.

Generalise beyond File I/O to any block based
async server (e.g. Network, FFT processing, etc.)

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

