
Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014,
Melbourne, Australia. July 9-11.

INTERFACING REAL-TIME AUDIO AND FILE I/O

Ross Bencina
portaudio.com

rossb@audiomulch.com

ABSTRACT

Programming a computer to record or play a sound file
in real-time is not as easy as it may seem. The naive ap-
proach is to call file I/O APIs from within the routine
that handles real-time audio I/O. This leads to audible
glitches whenever the time taken to access a file exceeds
the time available to deliver a buffer of real-time audio.
This paper describes an approach to streaming file play-
back and recording that operates correctly under these
conditions. It performs file I/O in a separate thread, buf-
fers audio data to mask file I/O delays, and uses asyn-
chronous message passing and lock-free queues for inter-
thread communication.

1. INTRODUCTION
Real-time audio I/O and file I/O are input/output meth-
ods with radically different timing properties. Software
that records or plays sound files must perform both types
of I/O. To ensure that a constant stream of audio samples
is fed to and from the audio hardware, real-time audio
programs must adhere to a strict schedule. By contrast,
file I/O operates on a best-effort basis, guaranteeing only
average-case throughput, not the timeliness of individual
operations. These differing timing properties make it dif-
ficult to interface between real-time audio and file I/O.
Solutions typically involve performing file I/O in a sep-
arate thread. This poses further difficulties, as most gen-
eral-purpose operating systems do not provide real-time-
safe inter-thread communication facilities.

This paper presents an efficient and reliable method
for implementing real-time file playback and recording.
The method comprises streaming algorithms, an asyn-
chronous message passing protocol, a system of lock-free
queues, and a “server” thread that performs file I/O. A
sample implementation in C++ is also available.1

The paper includes the following lock-free mechan-
isms, which readers may find generally useful for real-
time audio programming:

• A light-weight, lock-free message architecture support-
ing actor-like stream objects. (Aside from the I/O server
thread, no message loop, scheduler, or per-thread queues
are used.)

• Real-time-safe creation and destruction of stream ob-
jects; including non-blocking tear-down when streams
are awaiting asynchronous results.

• Light-weight, relaxed-order message queues for return-
ing results to stream objects.

1https://github.com/RossBencina/RealTimeFileStreaming

2. CONTEXT
Real-time audio programs must adhere to strict time con-
straints, yet few non-audio system APIs guarantee timeli-
ness. Here we explore these issues and introduce con-
cepts and terms for later use.

2.1. Real-time audio terminology and time constraints
The operating system triggers a real-time audio program
at fixed intervals to consume and/or produce buffers of
audio samples. We refer to the user-defined function re-
sponsible for producing and/or consuming audio data as
the real-time audio routine. The period of time between
successive invocations of this routine is referred to as the
buffer period. “Low-latency” interactive audio applica-
tions, such as music production and performance, ideally
employ buffer periods between one and six milliseconds.

To ensure that real-time audio does not glitch, the
time taken to execute the real-time audio routine must al-
ways be less than the buffer period. As a consequence,
all operations performed by the real-time audio routine
must be guaranteed to complete in short and bounded
time. Informally, we refer to operations with this prop-
erty as real-time-safe.

2.2. Library and system calls are not real-time-safe
General-purpose operating systems do not guarantee
worst-case time bounds for system calls. There are many
causes of unbounded time behaviour in such systems, in-
cluding: algorithms with poor worst-case complexity,
code that waits for hardware, code that performs block-
ing interactions with other threads, the thread scheduler
and/or the virtual memory paging mechanism.

In particular, memory allocation and unconditional
locks (mutexes) are not real-time-safe. Memory allocat-
ors often employ algorithms with poor worst-case time
bounds. Locks may be subject to unbounded priority in-
version.2

Furthermore, we can extrapolate that most system
APIs are not real-time-safe because they directly allocate
memory or use locks, or depend on code that does. An
inevitable conclusion follows that any real-time audio
routine must avoid calling system APIs. In fact, this is a
stated requirement of many real-time audio I/O APIs.

2Of Windows, OS X and Linux, only Linux offers the option of real-
time-safe mutexes. Windows uses a probabilistic priority inversion
avoidance mechanism with no time guarantees. Apple's libc mutex
implementation contains the comment “TODO: Priority inheritance
stuff.” Even on Linux, there is no guarantee that third-party code uses
PTHREAD_PRIO_INHERIT.

https://github.com/RossBencina/RealTimeFileStreaming

Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014,
Melbourne, Australia. July 9-11.

2.3. File I/O is not real-time-safe
File operations–such as opening, closing, reading and
writing–take considerable time due to delays inherent to
consumer-grade storage devices (hard disks, SSDs). Con-
sider the following:

• Fast spinning disks exhibit seek times of the order of 5 to
7 milliseconds for a single I/O operation.

• SSDs are typically specified to complete 99% of opera-
tions in less than one millisecond, but do not guarantee
worst-case time for all operations.

• Storage devices are a shared resource. When multiple
tasks try to perform I/O simultaneously, operations will
be queued and delayed as a consequence.

• Blocking file I/O functions such as fread() may wait for
data to be read from the storage medium despite the use
of anticipatory read-ahead by the operating system.

These considerations are amplified when multiple files
are streamed simultaneously, as in a multi-track digital
audio workstation.

3. STREAMING PLAYBACK AND RECORD
This section describes, in abstract, two separate pro-
cesses that may be executed from a real-time audio
routine: playing audio from a file and recording audio to
a file. We assume a model where the real-time audio
routine “pulls” data from the file during playback, and
“pushes” data to the file during recording.

3.1. Playback: asynchronous reads and read-ahead
buffering
Playback of audio data from a file involves a repeated
process of reading audio data from the file and copying
the data into an audio output buffer. For this process to
be successful, the audio routine must feed audio data to
the operating system within a prescribed time frame. Any
delay will lead to audible gaps or glitches.

When compared to the time available to run a low-
latency real-time audio routine, file I/O operations can
take a long time to execute. To avoid stalling the audio
routine it is necessary to perform I/O asynchronously.
This entails splitting I/O operations into two phases: (1)
initiate a request to perform an operation (e.g. read data
from a file), (2) at a later time, I/O completes and the file
data becomes available. Observe that a blocking I/O op-
eration has been converted into two non-blocking opera-
tions (initiate and complete), which are assumed to be
real-time-safe.

While asynchronous I/O avoids stalling the audio
routine, the potential delay between I/O initiation and
completion leaves open the problem of delivering an un-
interrupted stream of audio data.

To achieve uninterrupted playback, the audio routine
must continuously prefetch (read-ahead) audio data from
the file into a buffer. In the event that an asynchronous
file read operation is delayed, there must be sufficient au-
dio data in the buffer to support uninterrupted playback.
Figure 1a illustrates the process.

During streaming playback the real-time audio routine
is responsible for two tasks: (1) perform read-ahead by
issuing asynchronous file read requests to keep a prefetch
buffer full; and (2) copy audio data from the prefetch
buffer to the system's audio output buffer. Initially, the
real-time audio routine outputs silence until the prefetch
buffer becomes full.

3.2. Recording: prefetching buffer space, asynchron-
ous writes and write-behind buffering
Recording audio data to a file involves copying the audio
data from the system audio buffer to an intermediate buf-
fer, then writing the buffered data to the file.

As with playback, file writes must be performed asyn-
chronously to avoid stalling the real-time audio routine.
The buffering scheme differs from the playback case in
that the recording audio routine must always pre-allocate
sufficient buffer space to capture incoming audio data.
Once filled, the buffer space is passed off to the asyn-
chronous file write operation, which writes the data to
file (a process known as write-behind). When the write
operation has completed, the filled buffer space can be
reclaimed or reused. See Figure 1b.

The length of the pre-allocated space must be suffi-
cient to mask the worst-case time taken to allocate more
space. The write-behind buffer needs to be long enough
to mask the worst-case delay for file write operations.

4. MESSAGE PROTOCOL AND ALGORITHMS
Our implementation strategy uses an “I/O server” thread
to perform memory allocation and file I/O. Clients, such
as the real-time audio routine, communicate with the I/O
server using asynchronous messages. In this section we
describe the message protocol for asynchronous file I/O,
the streaming algorithms expressed in terms of the pro-
tocol, and requirements for a messaging infrastructure
suitable for real-time use. In particular we require the
availability of a real-time-safe mechanism for sending re-
quests and receiving replies.

Figure 1: a) Playback buffering scheme, b) Record buffering scheme.

Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014,
Melbourne, Australia. July 9-11.

4.1. An asynchronous message protocol for file I/O
The asynchronous protocol comprises messages (re-
quests) sent by a client to the I/O server and correspond-
ing results sent by the server in reply. From the client's
perspective, I/O invocation maps to sending a request
and I/O completion maps to receiving a reply.

The notation used below reads as follows: MSG a b⇀
denotes message MSG with parameter a sent asynchron-
ously to the server and result/reply b later received asyn-
chronously by the client. MSG a ⇀ ◦ is similar except
there is no reply and the operation is assumed to succeed.
(a,b,...) denotes a collection of parameters or results.
a | b denotes that either result a or result b is returned.

4.1.1. Opening and closing file handles
OPEN_FILE (path, accessMode) fileHandle | ⇀ error

Given a file path (a string) and an access mode (read-
only, read-write, etc.), open the file and return a file
handle or an error code (if an error occurs). The file
handle is an opaque identifier used by the client to refer
to the file when requesting I/O.
CLOSE_FILE fileHandle ◦⇀

At some point after receiving a valid file handle, the cli-
ent must close the handle with a CLOSE_FILE message.

4.1.2. Data blocks

Read and write operations deal in pointers to server-al-
located data blocks that hold regions of file data. All of a
file's data blocks contain the same number of audio
samples. Data blocks are addressed by their starting posi-
tion within the file. In addition to the raw file data, each
data block maintains book-keeping fields; such as an in-
dication of which areas of the block contain valid data.

4.1.3. Read operations
READ_BLOCK (fileHandle, position)
 dataBlock | ⇀ error

Given a file handle and a position in the file, allocate a
data block, read data from the file into the block, store
the valid data range, and return the data block or an error
code (if an error occurred).
RELEASE_READ_BLOCK (fileHandle, dataBlock) ◦⇀

Data blocks acquired with READ_BLOCK must be released
using the RELEASE_READ_BLOCK message, which causes the
data block to be deallocated.

4.1.4. Write operations
ALLOCATE_WRITE_BLOCK (fileHandle, position)
 dataBlock | ⇀ error

Given a file handle and a position in the file, allocate the
data block in which the client will write data for a spe-
cified region of a file. If the specified region is a valid
area of the file, fill the data block with data from the file
(similar to read), otherwise leave the data area uninitial-
ised and mark it as invalid. Return the data block or an
error code (if an error occurs).

After acquiring a block with ALLOCATE_WRITE_BLOCK,
the client must either commit or release the block using

either COMMIT_MODIFIED_WRITE_BLOCK or RELEASE_UNMODI-
FIED_WRITE_BLOCK.
COMMIT_MODIFIED_WRITE_BLOCK (fileHandle, dataBlock)
 ◦⇀

COMMIT_MODIFIED_WRITE_BLOCK writes the block's data to
the file and releases the data block.
RELEASE_UNMODIFIED_WRITE_BLOCK
 (fileHandle, dataBlock) ◦⇀

RELEASE_UNMODIFIED_WRITE_BLOCK deallocates the data
block without writing any data to the file. This message
should only be used if the block was not modified.

4.1.5. Message ordering constraints

A client may only issue READ_BLOCK or ALLOCATE_WRITE_-
BLOCK requests for a particular file handle prior to send-
ing the CLOSE_FILE message. This requires the server to
process requests in first-in first-out (FIFO) order, other-
wise the server might encounter a block request after
having closed the file. COMMIT_MODIFIED_WRITE_BLOCK re-
quests that extend the file length also require that re-
quests be processed in order, unless the file system sup-
ports files with “holes.”

The client may RELEASE or COMMIT acquired data blocks
after sending the CLOSE_FILE message. The I/O server
only closes the native file handle once all data blocks
have been released or committed.

4.2. Streaming algorithms
We now present the playback and recording algorithms.
The algorithms assume that a file handle has been ob-
tained by sending the OPEN_FILE message and receiving
the resulting file handle.

Algorithm: streaming file playback. Maintain a
prefetch queue referencing N data blocks ordered by as-
cending file position. Maintain a playback index refer-
ring to the next audio sample to output. At each time-
step, output a single audio sample. (See Figure 2a.)
1. [Setup.] Set the playback index to zero. Issue N
READ_BLOCK requests for sequential data blocks. Order
the block references in the prefetch queue, marking all
blocks as pending until they have been received. Output
silence until the replies to all N READ_BLOCK requests
have been received. At each subsequent audio time-step
perform the following three steps:

2. [Retiring replies.] Whenever a READ_BLOCK reply is re-
ceived, mark the block as received or as error if an error
result is received.

3. [Output an audio sample.] Output (copy out) the sample
referred to by the playback index–this indexes into the
front-most data block in the prefetch queue. Output si-
lence if the block is pending or if an error is indicated.

4. [Advance playback index, maintain the prefetch queue.]
Increment the playback index. If the index now points
into the second block in the queue: (1) pop the first
block from the queue and issue a RELEASE_READ_BLOCK
request for that block; (2) issue a READ_BLOCK request for
the block following the latest block requested so far. ∎

Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014,
Melbourne, Australia. July 9-11.

The algorithm for recording is similar to the above,
except that data is copied in to the blocks rather than out
of them (see Figure 2b). The messages are changed as
follows: READ_BLOCK becomes ALLOCATE_WRITE_BLOCK.
When data is copied into a block the block is marked as
modified. Modified blocks are released using
COMMIT_WRITE_BLOCK. Unmodified blocks are released us-
ing RELEASE_UNMODIFIED_WRITE_BLOCK (e.g. to flush the
prefetch queue when recording stops).

4.3. Implementation requirements and desiderata
Any implementation of the messaging protocol must ful-
fil the following requirements:

• Allocating, deallocating, sending requests and receiving
replies must be real-time-safe.

• The protocol requires the server to process events in
FIFO order. Clients may receive replies in any order.

In addition, the following desiderata would contribute
to the usability and flexibility of a solution:

• Support immediate disposal of streaming state, without
having to wait for pending replies.

• Construction and tear-down of streaming state should be
real-time-safe.

• Support creation and destruction of streams in any
thread, and allow stream states to migrate between
threads (e.g. create a stream in one thread and use it in
another, or use a stream in different threads at different
times). This implies being able to send requests and re-
ceive replies from any thread.

• Do not use thread-local storage or client-managed in-
ter-thread queueing infrastructure.

The first point is desirable when combining asyn-
chronous streams with imperative code. For instance it is
desirable to be able to embed a stream in a C++ object,
and to delete the object without having to wait for the
stream to receive and process pending asynchronous
replies.

The last three points express a desire for program-
ming flexibility and minimising maintenance overhead.
They seek to avoid the inconvenience of using rigid to-
pologies of queues and threads, and/or requiring certain
operations to be performed in certain threads.

Stream operations are not required to be thread-safe
or re-entrant. Stream state may be passed between
threads but not simultaneously accessed from multiple
threads.

5. IMPLEMENTATION IN C++
Figure 3 shows the multi-threaded communication struc-
ture of the solution. The I/O Server thread has a queue
(mailbox) for inbound requests. Client streams send re-
quests to the server by enqueueing Request objects into
the server's mailbox.

Figure 3. Multi-threaded communication structure show-
ing two client streams.

Streams are not associated with a particular thread and
may move freely between threads. In contrast to architec-
tures that employ an incoming message queue for each
thread, we use a separate result queue for each client
stream. When the server completes a request, it posts the
reply (if any) into the result queue specified by the re-
quest. Client streams poll their result queues as part of
the playback or recording process. There is no require-
ment for clients to be signalled by the server.

5.1. Requests and message queues
We now turn our attention to the implementation of the
Request objects and lock-free message queues.

5.1.1. Request objects

A single fixed-size Request data type (a C/C++ struct)
is used to represent all message protocol requests and
replies. Replies are returned to the client using the same
Request instance that was used to initiate the request.
The Request data type includes a tag indicating the spe-
cific request type (OPEN_FILE, CLOSE_FILE, etc.), a union
containing the parameters for each request type, and
fields common to all requests (link pointers, result code,
a pointer to a client queue to return replies/results, and
fields reserved for client-only use).

Each Request contains two “next” pointer fields that
allow the Request to be simultaneously linked into two

Figure 2: a) A prefetch queue of data blocks for playback, b) A prefetch queue of data blocks for recording

Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014,
Melbourne, Australia. July 9-11.

separate linked structures or queues. One next pointer is
used for linking the request into client-server communic-
ation data structures, for example to enqueue the Request
to the server, or to enqueue a reply to the client. A
second client-only next pointer is used by the client to
link Requests together into client-local data structures.

With the exception of client-only fields, the client
should not modify a Request object from the time that it
is sent to the server until its reply is received. When Re-
quest objects are not queued with the server, all Request
fields are available for client use.

A global lock-free freelist of Request objects supports
allocation and deallocation from any thread. The freelist
is implemented using the “IBM Freelist” algorithm (IBM
1983; Treiber 1987; Michael and Scott 1998), a last-in
first-out (LIFO) stack that supports non-blocking push
and pop operations.

5.1.2. A lock-free “pop-all” LIFO stack

Listing 1 shows a lock-free LIFO stack algorithm that
supports push, is-empty and pop-all operations.1 It sup-
ports concurrent operations from multiple threads. We
use this algorithm as the basis of our message queues.
struct Node { Node *next; };
struct Stack { Node *top; };
void init(Stack& s) { s.top = NULL; }
void push(Stack& s, Node *n, bool& wasEmpty) {
 do {
 Node *top = s.top;
 n->next = top;
 wasEmpty = (top==NULL);
 // CAS: atomic compare-and-swap
 // set s.top to n only if s.top == top
 } while(!CAS(&s.top, top, n));
}
bool is_empty(Stack& s) { return (s.top==NULL); }
Node *pop_all(Stack& s) {
 if (s.top==NULL) return; // don't modify if empty
 // XCHG: atomic exchange
 // set s.top to NULL, return old s.top
 return XCHG(&s.top,NULL);
}
Listing 1: “Pop-all” concurrent LIFO stack algorithm.

The algorithm works as follows: s.top points to the
top of a LIFO stack of linked nodes terminated by a NULL
value. The push algorithm (identical to the IBM freelist)
attempts to link a node onto the top of the stack, and re-
tries if a conflict with a concurrent operation is detected.
The pop-all algorithm uses an atomic exchange operation
to replace top with NULL and returns the previous contents
of the stack–a NULL-terminated linked list in LIFO order.2

5.1.3. Sending requests to the server

In section 4.3 we established that messages should be re-
ceived and processed by the I/O server in FIFO order,
and that it is desirable to support posting requests to the
server from arbitrary threads. To achieve these goals we
1The presentation here lacks memory fences and atomic loads and
stores. Check the example code for a more complete implementation.
2Although of uncertain origin, this algorithm, as well as the reversing
method discussed next, is well known to those familiar with the art of
lock-free programming, see e.g.:
https://groups.google.com/d/msg/lock-free/i0eE2-A7eIA/g745KEEx2JIJ

use a multiple-producer single-consumer (MPSC) FIFO
queue. A simple algorithm with this property is the so-
called “reversed IBM freelist.”

The algorithm can be described in terms of the pop-all
LIFO stack from the previous section: Producers en-
queue requests by pushing them onto the pop-all stack.
The consumer maintains a separate consumer-local stack
in FIFO order. Requests are dequeued from the con-
sumer-local stack. When the consumer-local stack is
empty, the consumer checks whether the pop-all stack is
empty, if not it pops all items from the pop-all stack and
reverses their order into the consumer-local FIFO queue,
from whence further requests are dequeued. The result is
a very simple lock-free MPSC FIFO queue.

When a client enqueues a new request it signals the
server using a semaphore (or on Windows, an auto-reset
Event Object). Since the server only waits on the sema-
phore when its lock-free stack is empty, the client need
only signal the semaphore when it pushes a request onto
an empty stack. The pop-all stack's push operation indic-
ates when it has pushed onto an empty stack.

5.1.4. Receiving results from the server: result queues

Each stream has its own result queue, an object com-
prising a lock-free queue and a book-keeping counter.
Results are only enqueued onto result queues by the I/O
server, and dequeued (polled) by the stream that owns
the result queue. The streaming algorithms do not require
replies to be returned in order, so the queue does not
need to guarantee delivery order. We use a lock-free
single-producer single-consumer (SPSC) relaxed-order
queue. It can be implemented similarly to the reversed
queue from the previous section, with reversing omitted.

A result queue maintains a count of expected results.
The client increments the count when it sends a request
that expects a reply, and decrements the count when the
result is received. When the count drops to zero no fur-
ther results are expected. (Note that this scheme pre-
cludes requests with optional replies.)

We embed result queues directly in Request objects.
Result queues only use one or two words of storage, and
hence can be stored in the request-type-specific paramet-
er area of a Request. This lets us allocate result queues
using the real-time-safe global Request freelist and to
send and receive them as messages. The latter feature is
used by the result queue clean-up process described later.

5.1.5. The server process

The server waits (blocks) on a semaphore until new re-
quests are posted to its queue. Received requests are pro-
cessed sequentially in FIFO order.

In order to manage the lifetime of native file handles,
the server associates a reference count with each open
file. The count is incremented when the server returns a
file handle to the client in response to OPEN_FILE, and
whenever the server returns a block to the client. The
count is decremented on CLOSE_FILE and whenever a
block is received from the client. The native file handle
is closed when the reference count drops to zero.

https://groups.google.com/d/msg/lock-free/i0eE2-A7eIA/g745KEEx2JIJ

Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014,
Melbourne, Australia. July 9-11.

5.2. Client streams
We now present the client stream data structure and its
life cycle: creation, maintenance, and destruction.

5.2.1. Client stream data structures

All client stream data structures are built by linking to-
gether Request objects. Request object allocation and
deallocation is real-time-safe. So too is allocation and
deallocation of stream data structures.

A fully constructed stream is illustrated in Figure 4. A
stream comprises a result queue Request (for receiving
results from the server), an OPEN_FILE Request (which is
transformed to CLOSE_FILE when closing the stream), and
zero or more block Requests linked into a tail-queue that
serves as the stream's prefetch buffer. A stream is refer-
enced by client code as an opaque pointer (handle). In-
ternally the pointer points to the result queue.

Figure 4: A fully constructed stream using linked Re-
quest objects. Each solid rectangle is a Request.

In addition to the result queue, OPEN_FILE Request and
prefetch queue, a stream maintains the following state
variables:

• The overall state of the stream; one of: {OPENING,
OPEN_IDLE, OPEN_BUFFERING, OPEN_STREAMING, ER-
ROR}.

• A count of pending blocks (those that have been reques-
ted but not yet returned to the stream).

• An index that tracks how much data has been copied to
or from the front-most data block.

These state variables are stored in unused and cli-
ent-use Request fields.

5.2.2. Creating and opening a stream

To create and open a stream, the client first creates two
Request objects: a result queue and an OPEN_FILE request.
The OPEN_FILE request is sent to the server, specifying
the result queue as its return address. The stream state is
set to OPENING, and an opaque stream pointer that points
to the result queue is returned to the client. Some time
later the OPEN_FILE request is returned in the result queue.
When the stream gains control it dequeues the result and
handles it as follows:

• If the OPEN_FILE request was successful, it is linked to
the result queue. It contains the file handle that will be
used for all block requests. The stream state is set to
OPEN_BUFFERING and the prefetch queue pointers are
cleared to indicate that the prefetch queue is empty.

• If the OPEN_FILE Request failed, the error result is
copied to the result queue's error field, the stream state
is set to ERROR, and the Request object is deallocated.

5.2.3. Maintaining the prefetch queue

The prefetch queue is represented using a singly-linked
tail queue. A tail queue affords constant-time insertion at
the back and constant-time removal from the front. The
queue is formed from pending and completed READ_BLOCK
or ALLOCATE_WRITE_BLOCK requests (see Figure 4).

The reading or writing process works by copying data
from or to the front-most block in the prefetch queue. A
numeric field in the front-most block request is used to
track how much data has been copied so far. Once the
process has finished with a block, the block is returned to
the server and a new block is requested and inserted at
the back of the queue. Block requests are linked into the
queue as soon as they are created.

The block request's request type field is also used
(overloaded) to track the state of each data block. The
block state is one of: {PENDING, READY, MODIFIED, ER-
ROR}. The request type (READ_BLOCK or ALLOCATE_-
WRITE_BLOCK) denotes the PENDING state. When a re-
quest's reply is received from the server, the block's state
is set to READY or ERROR. The MODIFIED state is used to
determine whether a recording stream should COMMIT or
RELEASE the block.

In its simplest form, seeking clears the prefetch queue,
returns all acquired blocks to the server, and issues READ
or ALLOCATE block requests starting at the new seek posi-
tion. Care must be taken with PENDING requests since
they are yet to arrive in the result queue. They can be re-
moved from the prefetch queue if flagged “return to the
server on arrival.”

Operations on the prefetch queue also affect the
stream's global state. If the streaming process finds that
the front-most block is PENDING, it signals an underflow
condition and causes the stream state to be set to
OPEN_BUFFERING. The stream state is set back to
OPEN_STREAMING when all pending blocks have been re-
ceived (this condition is detected using the pending
blocks count). The BUFFERING and STREAMING states
support behaviour that suspends playback while the
stream is buffering. If the prefetch buffer is correctly
sized, the BUFFERING state should only be encountered
immediately after seeking.

5.2.4. Destroying a stream

To destroy a stream, all resources associated with the
stream must be released. The destruction process needs
to account for the case where Requests are in flight when
the client instigates stream destruction. For example, the
stream may be waiting for the reply to an OPEN_FILE re-
quest or to one or more READ_BLOCK requests. In these
cases the result queue can not be destroyed until all res-
ults have been received. Then once received, results must
be cleaned up: a file handle returned by OPEN_FILE must
be closed, blocks acquired by READ_BLOCK or ALLOCATE_-
WRITE_BLOCK must be released.

Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014,
Melbourne, Australia. July 9-11.

The stream destruction algorithm makes use of three
facts: (1) each request that returns a resource has a de-
terministic clean-up procedure, (2) the result queue can
be sent as a message to the server, and (3) the result
queue includes a counter indicating the number of replies
that it is expecting. The counter makes it possible to de-
termine when the result queue has received all replies,
and hence when it can be safely destroyed.

Destruction of a stream that is in any of the OPEN_...
states involves the following algorithm:

Algorithm: destroying an open stream.
1. [Handle block requests in the prefetch queue.] For each

block request in the stream's prefetch queue: If the block
request is READY or MODIFIED, transform the block re-
quest into a RELEASE or COMMIT message respectively, and
send the request to the server (the server will release or
commit the block). Discard references to PENDING block
requests, they have yet to arrive in the result queue and
will be cleaned up later. Deallocate requests in the ER-
ROR state directly to the global freelist.

2. [Close the open file handle.] Transform the OPEN_FILE
request into a CLOSE_FILE and send it to the server.

3. [Dispose the result queue.] If the result queue's expected
result count is zero, deallocate the result queue's contain-
ing Request object to the global freelist. Otherwise, send
the result queue to the server using a newly defined mes-
sage type: CLEANUP_RESULT_QUEUE resultQueue ◦⇀
This message delegates responsibility for cleaning up
any pending requests to the server (see next section). ∎

Destruction of a stream in the OPENING state sends the
result queue request to the server as a CLEANUP_RESULT_-
QUEUE request. Destruction of a stream in the ERROR state
deallocates the result queue Request object to the global
freelist.

5.2.5. Server processing of CLEANUP_RESULT_QUEUE

When the server receives a CLEANUP_RESULT_QUEUE re-
quest it pops any queued results from the result queue.
For each popped result it decrements the result queue's
expected result count and performs the result's compens-
ating operation (e.g. OPEN_FILE transforms to CLOSE_-
FILE, READ_BLOCK transforms to RELEASE_READ_BLOCK). If
the result queue's expected result count is zero, the result
queue is deallocated. Otherwise, the result queue is
marked with an awaiting clean-up flag. Subsequently,
whenever the server completes a request, it checks the
result queue's flag. If the flag is set, rather than en-
queueing the reply, the server decrements the expected
result count and performs the compensating operation.
Once the expected result count drops to zero the result
queue is deallocated to the global freelist.

The result queue clean-up process ensures that all re-
sources associated with a stream are released. It also
provides a non-blocking real-time-safe mechanism for
destroying streams. As the result queue is itself a Request
object, the CLEANUP_RESULT_QUEUE message can always be
issued. It cannot fail due to failure to allocate a Request.

6. DISCUSSION AND FUTURE WORK
The presented algorithms for real-time stream operations
have time complexity of either O(1) or O(N) in the
length of the prefetch queue. Strategies can be devised to
reduce the cost to O(1) by moving responsibility for
prefetch queue creation and tear-down to the I/O server.

Ideally the protocol would not require Request objects
to be allocated or deallocated while the stream is run-
ning. Request allocation and transport overhead can be
reduced by altering the protocol to allow requests to be
reused. Methods to achieve this include: always return
results, provide messages that perform multiple opera-
tions (e.g. read N blocks), and combine messages (e.g.
combine RELEASE_BLOCK and READ_BLOCK into a single Re-
quest).

The protocol described in section 4 does not commu-
nicate the file length or audio data format information to
the client stream. If needed, this information can be com-
municated as additional results from OPEN_FILE.

As presented, the method does not reliably support
multiple real-time streams. The seek process injects N
consecutive READ_BLOCK operations into the I/O server
queue. These operations may delay more urgent opera-
tions that are enqueued later. To address this, assign a
deadline to each request and have the server perform op-
erations in earliest-deadline-first (EDF) order.

The performance of the lock-free queues used here are
sufficient for the expected contention rate. In a high-
throughput scenario other lock-free and wait-free queue
algorithms should be considered.

Some messages involve shared access to the Request
object by both client and server. This does not result in
any data races since access is limited to disjoint fields in
each thread. It does however introduce the possibility of
false-sharing. It would be interesting to investigate the
impact of false-sharing on protocol performance.

We have omitted discussion of handling formatted
sound files (.wav, .aiff, .mp3, etc.). One way to handle
formatted sound files is for the I/O server thread to per-
form formatted I/O using an existing sound file I/O lib-
rary. Alternatively, the I/O server could be extended to
implement sound file container parsing and audio format
conversion.

This paper has presented a simplified model of a real-
time file streaming system currently under development
by the author. The system under development is designed
to support multi-threaded access to streaming file I/O for
a multi-core-capable real-time audio engine. Beyond
what has been presented here, the system supports cach-
ing and sharing file handles and data blocks amongst
multiple client streams. Requests may be prioritised, re-
prioritised and cancelled. Multiple native I/O operations
may be queued to the operating system concurrently. The
system supports parsing sound file containers and trans-
parent data format conversion. All of this is achieved us-
ing an asynchronous messaging model similar to the one
presented here.

Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014,
Melbourne, Australia. July 9-11.

7. RELATED WORK
I/O has been an important aspect of computing from the
beginning. Knuth (1997) surveys early work and de-
scribes I/O using linked chains of buffer descriptors.

Operating system kernels use queues of linked I/O re-
quests (Comer 2011). Windows NT's I/O request packets
(Russinovich et al. 2012) have their origins dating back
at least to DEC's RSX11 operating system (Pellegrini
and Cutler 1974). The Parameter Block API of Mac OS
Classic (Apple 1985) is an asynchronous file I/O API
that entails enqueueing parameter blocks (requests) to be
processed asynchronously by the operating system.

Fixed-size I/O data blocks are commonly used for
device-independent kernel interfaces (Tanenbaum 2001).
Pai and colleagues (2000) conducted an extensive study
of models for exchanging I/O buffers. Brustoloni (1997)
provides a useful taxonomy of buffer sharing models.

The solution described here is an instance of the
“Half-Sync/Half Async” design pattern (Schmidt and
Cranor 1995), with the variation that clients do not block
if data is unavailable. Asynchronous message queueing
and fixed size allocation pools are standard techniques
in real-time systems development (Douglass 2003).

For a gentle introduction to lock-free algorithms, see
(Michael 2013). The Synthesis operating system kernel is
notable for its use of lock-free data structures for
queueing (Massalin and Pu 1992). The lock-free pop-all
LIFO and reverse IBM freelist described in this paper,
were encountered on the comp.programming.threads
newsgroup during 2005-2008. Participants included Joe
Seigh, Chris Thomasson and Dmitry Vyukov.

Lock-free ring buffers are used for transferring audio
data and messages in real-time audio applications,
primarily as a means to avoid priority inversion, as in for
example PortAudio (Bencina and Burk 2001). Lock-free
techniques for computer music systems were discussed
by Fober and colleagues (2002). A concrete example of
use is James McCartney's SuperCollider 3 synthesis serv-
er, scsynth (2002). See (Bencina 2011) for an analysis of
the message passing techniques in scsynth. Another ap-
plication of lock-free techniques in computer music is
Shelton's real-time live coding environment (2011).

 Anderson and colleagues (1997) describe a real-time
video conferencing application using a scheme of lock-
free queues for inter-thread communication. That public-
ation is notable for its analysis of the hard-real-time-
safety of lock-free queues on a uniprocessor. A related
analysis is given by (Cho 2006). The author is not aware
of similar analysis for multi-processor systems.

8. ACKNOWLEDGEMENTS

Many thanks to Tony Holzner, Scott Brewer, Phil Burk,
Andrew Bencina and the anonymous reviewers for their
helpful feedback on earlier drafts of this paper.

9. REFERENCES
Anderson, J. H. et al. 1997. “Real-Time Computing with Lock-
Free Shared Objects.” ACM Transactions on Computer Sys-
tems. 15(2):134–165.

Apple Computer, Inc. 1985. Inside Macintosh, Volume II.
Reading, Massachusetts: Addison-Wesley, pp. II-97 – II-119.
Bencina, R. and P. Burk. 2001. PortAudio – an open source
cross platform audio API. In Proceedings of the 2001 Interna-
tional Computer Music Conference.
Bencina, R. 2011. “Inside scsynth,” In Wilson, Cottle, Collins
eds. The Super Collider Book, Massachusetts: The MIT Press,
pp. 721–740.
Brustoloni, J. C. 1997. “Effects of Data Passing Semantics and
Operating System Structure on Network I/O Performance.”
Doctoral thesis. Carnegie-Mellon University Pittsburgh PA,
School of Computer Science.
Cho, H. et al. 2006. “Lock-Free Synchronization for Dynamic
Embedded Real-Time Systems.” In proceedings Design, Auto-
mation and Test in Europe, DATE '06.
Comer, D. 2011. Operating System Design - The Xinu Ap-
proach, Linksys Version. CRC Press, pp. 373–381.
Douglass, B. P. 2003 Real Time Design Patterns. Boston: Ad-
dison-Wesley, sections 5.3 and 6.3.
Fober, D. et al. 2002. “Lock-Free Techniques for Concurrent
Access to Shared Objects.” Actes des Journ’ees d’Inform-
atique Musicale JIM2002, Marseille, pp.143–150.
International Business Machines Corporation (IBM). 1983.
IBM System/370 Extended Architecture, Principles of Opera-
tion. First Edition, pp. A-44 – A-45.
Knuth, D. E. 1997. The Art of Computer Programming,
Volume 1. 3rd Ed. Upper Saddle River, NJ: Addison-Wesley,
pp. 215–231.
Massalin, H. and C. Pu. 1992. “A Lock-Free Multiprocessor
OS Kernel.” ACM SIGOPS Operating Systems Review,
26(2):108.
McCartney, J. 2002. “Rethinking the computer music lan-
guage: SuperCollider.” Computer Music Journal 26(4) 61–68.
Michael, M. M. and M. L. Scott. 1998. “Nonblocking Al-
gorithms and Preemption-Safe Locking on Multiprogrammed
Shared Memory Multiprocessors.” Journal of Parallel and
Distributed Computing 51(1):1–26.
Michael, M. M. 2013. “The Balancing Act of Choosing Non-
blocking Features.” ACM Queue 11(7).
Pai, S. et al. 2000. “IO-Lite: A Unified I/O Buffering and
Caching System.” ACM Transactions on Computer Systems.
18(1):37–66.
Pellegrini, M. and Cutler, D. 1974. “RSX-11M Working
Design Document,” Digital Equipment Corp, Maynard Mass,
p. 35.
Russinovich, M., et al. 2012. Windows Internals. 6th ed. Part 2.
Redmond, Washington: Microsoft Press, p. 28.
Schmidt, D. C. and Cranor, C. D. 1995. “Half-Sync/Half-
Async - An Architectural Pattern for Efficient and Well-struc-
tured Concurrent I/O.” In Proceedings of the 2nd Annual Con-
ference on the Pattern Languages of Programs.
Shelton, R. J. 2011. “A Lock-Free Environment for Computer
Music: Concurrent Components for Computer Supported Co-
operative Work.” PhD thesis. The University of Melbourne,
Department of Computer Science and Software Engineering.
Tanenbaum, A. S. 2001. “Modern Operating Systems,” 2nd Ed.
2001, New Jersey: Prentice Hall. p. 298.
Treiber, R. K. 1986. “Systems Programming: Coping with Par-
allelism”. Technical Report RJ 5118, IBM Almaden Research
Center.

	1. INTRODUCTION
	2. CONTEXT
	2.1. Real-time audio terminology and time constraints
	2.2. Library and system calls are not real-time-safe
	2.3. File I/O is not real-time-safe

	3. Streaming playback and record
	3.1. Playback: asynchronous reads and read-ahead buffering
	3.2. Recording: prefetching buffer space, asynchronous writes and write-behind buffering

	4. Message protocol and algorithms
	4.1. An asynchronous message protocol for file I/O
	4.1.1. Opening and closing file handles
	4.1.2. Data blocks
	4.1.3. Read operations
	4.1.4. Write operations
	4.1.5. Message ordering constraints

	4.2. Streaming algorithms
	4.3. Implementation requirements and desiderata

	5. implementation in C++
	5.1. Requests and message queues
	5.1.1. Request objects
	5.1.2. A lock-free “pop-all” LIFO stack
	5.1.3. Sending requests to the server
	5.1.4. Receiving results from the server: result queues
	5.1.5. The server process

	5.2. Client streams
	5.2.1. Client stream data structures
	5.2.2. Creating and opening a stream
	5.2.3. Maintaining the prefetch queue
	5.2.4. Destroying a stream
	5.2.5. Server processing of CLEANUP_RESULT_QUEUE

	6. Discussion and Future WORK
	7. related work
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

