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ABSTRACT

Programming a computer to record or play a sound file 
in real-time is not as easy as it may seem. The naive ap-
proach is to call  file I/O APIs  from within the routine 
that  handles real-time audio I/O.  This leads to audible 
glitches whenever the time taken to access a file exceeds 
the time available to deliver a buffer of real-time audio. 
This paper describes an approach to streaming file play-
back and recording that  operates  correctly under these 
conditions. It performs file I/O in a separate thread, buf-
fers audio data to mask file I/O delays,  and uses asyn-
chronous message passing and lock-free queues for inter-
thread communication.

1. INTRODUCTION
Real-time audio I/O and file I/O are input/output meth-
ods with radically different timing properties.  Software 
that records or plays sound files must perform both types 
of I/O. To ensure that a constant stream of audio samples 
is fed to and from the audio hardware,  real-time audio 
programs must adhere to a strict schedule. By contrast, 
file I/O operates on a best-effort basis, guaranteeing only 
average-case throughput, not the timeliness of individual 
operations. These differing timing properties make it dif-
ficult to interface between real-time audio and file I/O. 
Solutions typically involve performing file I/O in a sep-
arate thread. This poses further difficulties, as most gen-
eral-purpose operating systems do not provide real-time-
safe inter-thread communication facilities.

This paper presents an efficient and reliable method 
for implementing real-time file playback and recording. 
The  method comprises  streaming algorithms,  an  asyn-
chronous message passing protocol, a system of lock-free 
queues, and a “server” thread that performs file I/O. A 
sample implementation in C++ is also available.1

The paper  includes the following lock-free mechan-
isms, which readers may find generally useful for real-
time audio programming:

• A light-weight,  lock-free message architecture support-
ing actor-like stream objects. (Aside from the I/O server 
thread, no message loop, scheduler, or per-thread queues 
are used.)

• Real-time-safe  creation  and  destruction  of  stream  ob-
jects;  including  non-blocking  tear-down  when  streams 
are awaiting asynchronous results.

• Light-weight,  relaxed-order message queues for return-
ing results to stream objects.

1https://github.com/RossBencina/RealTimeFileStreaming  

2. CONTEXT
Real-time audio programs must adhere to strict time con-
straints, yet few non-audio system APIs guarantee timeli-
ness.  Here  we explore  these issues and introduce con-
cepts and terms for later use.

2.1. Real-time audio terminology and time constraints
The operating system triggers a real-time audio program 
at fixed intervals to consume and/or produce buffers of 
audio samples. We refer to the user-defined function re-
sponsible for producing and/or consuming audio data as 
the real-time audio routine. The period of time between 
successive invocations of this routine is referred to as the 
buffer period. “Low-latency” interactive audio applica-
tions, such as music production and performance, ideally 
employ buffer periods between one and six milliseconds.

To  ensure  that  real-time audio  does  not  glitch,  the 
time taken to execute the real-time audio routine must al-
ways be less than the buffer period. As a consequence, 
all operations performed by the real-time audio routine 
must be  guaranteed  to  complete in  short  and bounded 
time. Informally, we refer to operations with this prop-
erty as real-time-safe.

2.2. Library and system calls are not real-time-safe
General-purpose  operating  systems  do  not  guarantee 
worst-case time bounds for system calls. There are many 
causes of unbounded time behaviour in such systems, in-
cluding:  algorithms  with  poor  worst-case  complexity, 
code that waits for hardware,  code that performs block-
ing interactions with other threads, the thread scheduler 
and/or the virtual memory paging mechanism.

In  particular,  memory  allocation  and  unconditional 
locks (mutexes) are not real-time-safe. Memory allocat-
ors often employ algorithms with poor worst-case time 
bounds. Locks may be subject to unbounded priority in-
version.2 

Furthermore,  we  can  extrapolate  that  most  system 
APIs are not real-time-safe because they directly allocate 
memory or use locks, or depend on code that does. An 
inevitable  conclusion  follows  that  any  real-time  audio 
routine must avoid calling system APIs. In fact, this is a 
stated requirement of many real-time audio I/O APIs.

2Of Windows, OS X and Linux, only Linux offers the option of real-
time-safe mutexes.  Windows  uses  a  probabilistic  priority  inversion 
avoidance  mechanism with  no time  guarantees.  Apple's libc  mutex 
implementation  contains  the  comment  “TODO: Priority  inheritance 
stuff.” Even on Linux, there is no guarantee that third-party code uses 
PTHREAD_PRIO_INHERIT.

https://github.com/RossBencina/RealTimeFileStreaming
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2.3. File I/O is not real-time-safe
File  operations–such  as  opening,  closing,  reading  and 
writing–take considerable time due to delays inherent to 
consumer-grade storage devices (hard disks, SSDs). Con-
sider the following:

• Fast spinning disks exhibit seek times of the order of 5 to 
7 milliseconds for a single I/O operation.

• SSDs are typically specified to complete 99% of opera-
tions in less than one millisecond, but do not guarantee 
worst-case time for all operations.

• Storage devices  are  a  shared  resource.  When multiple 
tasks try to perform I/O simultaneously, operations will 
be queued and delayed as a consequence.

• Blocking file I/O functions such as fread() may wait for 
data to be read from the storage medium despite the use 
of anticipatory read-ahead by the operating system.

These considerations are amplified when multiple files 
are streamed simultaneously,  as in a multi-track digital 
audio workstation.

3. STREAMING PLAYBACK AND RECORD
This  section  describes,  in  abstract,  two  separate  pro-
cesses  that  may  be  executed  from  a  real-time  audio 
routine: playing audio from a file and recording audio to 
a  file.  We assume a  model  where  the  real-time audio 
routine “pulls” data from the file during playback, and 
“pushes” data to the file during recording.

3.1. Playback: asynchronous reads and read-ahead 
buffering
Playback of audio data from a file involves a repeated 
process of reading audio data from the file and copying 
the data into an audio output buffer. For this process to 
be successful, the audio routine must feed audio data to 
the operating system within a prescribed time frame. Any 
delay will lead to audible gaps or glitches.

When compared to the time available to run a low-
latency real-time audio routine,  file I/O operations can 
take a long time to execute. To avoid stalling the audio 
routine it  is  necessary to  perform I/O  asynchronously. 
This entails splitting I/O operations into two phases: (1) 
initiate a request to perform an operation (e.g. read data 
from a file), (2) at a later time, I/O completes and the file 
data becomes available. Observe that a blocking I/O op-
eration has been converted into two non-blocking opera-
tions (initiate and  complete),  which are assumed to be 
real-time-safe.

While  asynchronous  I/O  avoids  stalling  the  audio 
routine,  the  potential  delay between I/O  initiation  and 
completion leaves open the problem of delivering an un-
interrupted stream of audio data.

To achieve uninterrupted playback, the audio routine 
must continuously prefetch (read-ahead) audio data from 
the file into a  buffer. In the event that an asynchronous 
file read operation is delayed, there must be sufficient au-
dio data in the buffer to support uninterrupted playback. 
Figure 1a illustrates the process.

During streaming playback the real-time audio routine 
is responsible for two tasks: (1) perform read-ahead by 
issuing asynchronous file read requests to keep a prefetch 
buffer  full;  and (2)  copy audio data from the prefetch 
buffer to the system's audio output buffer. Initially,  the 
real-time audio routine outputs silence until the prefetch 
buffer becomes full.

3.2. Recording: prefetching buffer space, asynchron-
ous writes and write-behind buffering
Recording audio data to a file involves copying the audio 
data from the system audio buffer to an intermediate buf-
fer, then writing the buffered data to the file.

As with playback, file writes must be performed asyn-
chronously to avoid stalling the real-time audio routine. 
The buffering scheme differs from the playback case in 
that the recording audio routine must always pre-allocate 
sufficient  buffer space to capture incoming audio data. 
Once filled, the buffer space is passed off to the asyn-
chronous file write operation,  which writes the data to 
file (a process known as  write-behind). When the write 
operation has completed, the filled buffer space can be 
reclaimed or reused. See Figure 1b.

The length of the pre-allocated space must be suffi-
cient to mask the worst-case time taken to allocate more 
space. The write-behind buffer needs to be long enough 
to mask the worst-case delay for file write operations.

4. MESSAGE PROTOCOL AND ALGORITHMS
Our implementation strategy uses an “I/O server” thread 
to perform memory allocation and file I/O. Clients, such 
as the real-time audio routine, communicate with the I/O 
server using asynchronous messages. In this section we 
describe the message protocol for asynchronous file I/O, 
the streaming algorithms expressed in terms of the pro-
tocol,  and  requirements  for  a  messaging  infrastructure 
suitable  for  real-time use.  In  particular  we require  the 
availability of a real-time-safe mechanism for sending re-
quests and receiving replies. 

Figure 1: a) Playback buffering scheme, b) Record buffering scheme.
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4.1. An asynchronous message protocol for file I/O
The  asynchronous  protocol  comprises  messages  (re-
quests) sent by a client to the I/O server and correspond-
ing results sent by the server in reply. From the client's 
perspective,  I/O invocation maps to  sending a  request 
and I/O completion maps to receiving a reply.

The notation used below reads as follows: MSG a  b⇀  
denotes message  MSG with parameter  a sent  asynchron-
ously to the server and result/reply b later received asyn-
chronously by the client.  MSG a  ⇀ ◦ is  similar except 
there is no reply and the operation is assumed to succeed. 
(a,b,...) denotes a collection of parameters or results. 
a | b denotes that either result a or result b is returned.

4.1.1. Opening and closing file handles
OPEN_FILE (path, accessMode)  fileHandle | ⇀ error

Given a file path (a string) and an access mode (read-
only,  read-write,  etc.),  open  the  file  and  return  a  file 
handle  or  an  error  code  (if  an  error  occurs).  The  file 
handle is an opaque identifier used by the client to refer 
to the file when requesting I/O.
CLOSE_FILE fileHandle  ◦⇀

At some point after receiving a valid file handle, the cli-
ent must close the handle with a CLOSE_FILE message.

4.1.2. Data blocks

Read and write operations deal in pointers to server-al-
located data blocks that hold regions of file data. All of a 
file's  data  blocks  contain  the  same  number  of  audio 
samples. Data blocks are addressed by their starting posi-
tion within the file. In addition to the raw file data, each 
data block maintains book-keeping fields; such as an in-
dication of which areas of the block contain valid data.

4.1.3. Read operations
READ_BLOCK (fileHandle, position)
     dataBlock | ⇀ error

Given a file handle and a position in the file, allocate a 
data block, read data from the file into the block, store 
the valid data range, and return the data block or an error 
code (if an error occurred). 
RELEASE_READ_BLOCK (fileHandle, dataBlock)  ◦⇀

Data blocks acquired with  READ_BLOCK must be released 
using the RELEASE_READ_BLOCK message, which causes the 
data block to be deallocated.

4.1.4. Write operations
ALLOCATE_WRITE_BLOCK (fileHandle, position)
     dataBlock | ⇀ error

Given a file handle and a position in the file, allocate the 
data block in which the client will write data for a spe-
cified region of a file. If the specified region is a valid 
area of the file, fill the data block with data from the file 
(similar to read), otherwise leave the data area uninitial-
ised and mark it as invalid. Return the data block or an 
error code (if an error occurs).

After  acquiring a  block  with  ALLOCATE_WRITE_BLOCK, 
the client must either commit or release the block using 

either  COMMIT_MODIFIED_WRITE_BLOCK or  RELEASE_UNMODI-
FIED_WRITE_BLOCK.
COMMIT_MODIFIED_WRITE_BLOCK (fileHandle, dataBlock)
     ◦⇀

COMMIT_MODIFIED_WRITE_BLOCK writes the block's data to 
the file and releases the data block.
RELEASE_UNMODIFIED_WRITE_BLOCK
    (fileHandle, dataBlock)  ◦⇀

RELEASE_UNMODIFIED_WRITE_BLOCK deallocates the  data 
block without writing any data to the file.  This message 
should only be used if the block was not modified.

4.1.5. Message ordering constraints

A client may only issue READ_BLOCK or ALLOCATE_WRITE_-
BLOCK requests for a particular file handle prior to send-
ing the  CLOSE_FILE message. This requires the server to 
process requests in first-in first-out (FIFO) order, other-
wise  the  server  might  encounter  a  block  request  after 
having closed the file.  COMMIT_MODIFIED_WRITE_BLOCK re-
quests  that  extend  the  file  length  also  require  that  re-
quests be processed in order, unless the file system sup-
ports files with “holes.”

The client may RELEASE or COMMIT acquired data blocks 
after  sending  the  CLOSE_FILE message.  The  I/O  server 
only closes  the native file  handle once all  data  blocks 
have been released or committed.

4.2. Streaming algorithms
We now present the playback and recording algorithms. 
The algorithms assume that a file handle has been ob-
tained by sending the  OPEN_FILE message and receiving 
the resulting file handle.

Algorithm:  streaming  file  playback.  Maintain  a 
prefetch queue referencing N data blocks ordered by as-
cending file position. Maintain a playback index refer-
ring to the next audio sample to output. At each time-
step, output a single audio sample. (See Figure 2a.)
1. [Setup.]  Set  the  playback  index  to  zero.  Issue  N 
READ_BLOCK requests  for  sequential  data  blocks.  Order 
the block references in the prefetch queue, marking all 
blocks as pending until they have been received. Output 
silence  until  the  replies  to  all  N  READ_BLOCK requests 
have been received. At each subsequent audio time-step 
perform the following three steps:

2. [Retiring replies.]  Whenever a  READ_BLOCK reply is  re-
ceived, mark the block as received or as error if an error 
result is received.

3. [Output an audio sample.] Output (copy out) the sample 
referred to by the playback index–this indexes into the 
front-most data block in the prefetch queue. Output si-
lence if the block is pending or if an error is indicated.

4. [Advance playback index, maintain the prefetch queue.] 
Increment the playback index. If  the index now points 
into  the  second  block  in  the  queue:  (1)  pop  the  first 
block from the queue and issue a  RELEASE_READ_BLOCK 
request for that block; (2) issue a READ_BLOCK request for 
the block following the latest block requested so far. ∎



Bencina, R. 2014. Interfacing Real-Time Audio and File I/O. In Proceedings of the 2014 Australasian Computer Music Conference, ACMC 2014, 
Melbourne, Australia. July 9-11.

The algorithm for recording is similar to the above, 
except that data is copied in to the blocks rather than out 
of them (see Figure 2b).  The messages are changed as 
follows:  READ_BLOCK becomes  ALLOCATE_WRITE_BLOCK. 
When data is copied into a block the block is marked as 
modified. Modified  blocks  are  released  using 
COMMIT_WRITE_BLOCK. Unmodified blocks are released us-
ing  RELEASE_UNMODIFIED_WRITE_BLOCK (e.g.  to  flush  the 
prefetch queue when recording stops).

4.3. Implementation requirements and desiderata
Any implementation of the messaging protocol must ful-
fil the following requirements:

• Allocating, deallocating, sending requests and receiving 
replies must be real-time-safe.

• The  protocol  requires  the  server  to  process  events  in 
FIFO order. Clients may receive replies in any order.

In addition, the following desiderata would contribute 
to the usability and flexibility of a solution:

• Support immediate disposal of streaming state, without 
having to wait for pending replies.

• Construction and tear-down of streaming state should be 
real-time-safe.

• Support  creation  and  destruction  of  streams  in  any 
thread,  and  allow  stream  states  to  migrate  between 
threads (e.g. create a stream in one thread and use it in 
another, or use a stream in different threads at different 
times). This implies being able to send requests and re-
ceive replies from any thread.

• Do not  use  thread-local  storage or  client-managed  in-
ter-thread queueing infrastructure.

The  first  point  is  desirable  when  combining  asyn-
chronous streams with imperative code. For instance it is 
desirable to be able to embed a stream in a C++ object, 
and to delete the object without having to wait for the 
stream  to  receive  and  process  pending  asynchronous 
replies.

The last  three points  express  a  desire for  program-
ming flexibility and minimising maintenance overhead. 
They seek to avoid the inconvenience of using rigid to-
pologies of queues and threads, and/or requiring certain 
operations to be performed in certain threads.

Stream operations are not required to be thread-safe 
or  re-entrant.  Stream  state  may  be  passed  between 
threads but not simultaneously accessed from multiple 
threads. 

5. IMPLEMENTATION IN C++
Figure 3 shows the multi-threaded communication struc-
ture of the solution. The I/O Server thread has a queue 
(mailbox) for inbound requests. Client streams send re-
quests to the server by enqueueing Request objects into 
the server's mailbox.

Figure 3. Multi-threaded communication structure show-
ing two client streams.

Streams are not associated with a particular thread and 
may move freely between threads. In contrast to architec-
tures that employ an incoming message queue for each 
thread,  we use  a  separate result  queue for  each  client 
stream. When the server completes a request, it posts the 
reply (if any) into the result queue specified by the re-
quest. Client streams poll their result queues as part of 
the playback or recording process. There is no require-
ment for clients to be signalled by the server.

5.1. Requests and message queues
We now turn our attention to the implementation of the 
Request objects and lock-free message queues.

5.1.1. Request objects

A single fixed-size Request data type (a C/C++ struct) 
is  used  to  represent  all  message protocol  requests  and 
replies. Replies are returned to the client using the same 
Request  instance  that  was used  to  initiate  the  request. 
The Request data type includes a tag indicating the spe-
cific request type (OPEN_FILE,  CLOSE_FILE, etc.), a union 
containing  the  parameters  for  each  request  type,  and 
fields common to all requests (link pointers, result code, 
a pointer to a client queue to return replies/results, and 
fields reserved for client-only use).

Each Request contains two “next” pointer fields that 
allow the Request to be simultaneously linked into two 

Figure 2: a) A prefetch queue of data blocks for playback, b) A prefetch queue of data blocks for recording
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separate linked structures or queues. One next pointer is 
used for linking the request into client-server communic-
ation data structures, for example to enqueue the Request 
to  the  server,  or  to  enqueue  a  reply  to  the  client.  A 
second client-only next pointer is used by the client to 
link Requests together into client-local data structures. 

With  the  exception  of  client-only  fields,  the  client 
should not modify a Request object from the time that it 
is sent to the server until its reply is received. When Re-
quest objects are not queued with the server, all Request 
fields are available for client use.

A global lock-free freelist of Request objects supports 
allocation and deallocation from any thread. The freelist 
is implemented using the “IBM Freelist” algorithm (IBM 
1983; Treiber 1987; Michael and Scott 1998), a last-in 
first-out  (LIFO)  stack that  supports  non-blocking push 
and pop operations.

5.1.2. A lock-free “pop-all” LIFO stack

Listing 1 shows a lock-free  LIFO stack algorithm that 
supports  push, is-empty and  pop-all operations.1 It  sup-
ports  concurrent  operations  from multiple threads.  We 
use this algorithm as the basis of our message queues. 
struct Node { Node *next; };
struct Stack { Node *top; };
void init(Stack& s) { s.top = NULL; }
void push(Stack& s, Node *n, bool& wasEmpty) {
  do {
    Node *top = s.top;
    n->next = top;
    wasEmpty = (top==NULL);
    // CAS: atomic compare-and-swap
    // set s.top to n only if s.top == top
  } while(!CAS(&s.top, top, n));
}
bool is_empty(Stack& s) { return (s.top==NULL); }
Node *pop_all(Stack& s) {
  if (s.top==NULL) return; // don't modify if empty 
  // XCHG: atomic exchange
  // set s.top to NULL, return old s.top
  return XCHG(&s.top,NULL); 
}
Listing 1: “Pop-all” concurrent LIFO stack algorithm.

The algorithm works as follows:  s.top points to the 
top of a LIFO stack of linked nodes terminated by a NULL 
value. The push algorithm (identical to the IBM freelist) 
attempts to link a node onto the top of the stack, and re-
tries if a conflict with a concurrent operation is detected. 
The pop-all algorithm uses an atomic exchange operation 
to replace top with NULL and returns the previous contents 
of the stack–a NULL-terminated linked list in LIFO order.2

5.1.3. Sending requests to the server

In section 4.3 we established that messages should be re-
ceived and processed by the I/O server in FIFO order, 
and that it is desirable to support posting requests to the 
server from arbitrary threads. To achieve these goals we 
1The presentation  here  lacks  memory  fences  and  atomic  loads  and 
stores. Check the example code for a more complete implementation.
2Although of uncertain origin, this algorithm, as well as the reversing 
method discussed next, is well known to those familiar with the art of 
lock-free programming, see e.g.:
https://groups.google.com/d/msg/lock-free/i0eE2-A7eIA/g745KEEx2JIJ

use a multiple-producer single-consumer (MPSC) FIFO 
queue. A simple algorithm with this property is the so-
called “reversed IBM freelist.”

The algorithm can be described in terms of the pop-all 
LIFO  stack  from the  previous  section:  Producers  en-
queue requests by pushing them onto the pop-all stack. 
The consumer maintains a separate consumer-local stack 
in  FIFO  order.  Requests  are  dequeued  from the  con-
sumer-local  stack.  When  the  consumer-local  stack  is 
empty, the consumer checks whether the pop-all stack is 
empty, if not it pops all items from the pop-all stack and 
reverses their order into the consumer-local FIFO queue, 
from whence further requests are dequeued. The result is 
a very simple lock-free MPSC FIFO queue.

When a client enqueues a new request it signals the 
server using a semaphore (or on Windows, an auto-reset 
Event Object). Since the server only waits on the sema-
phore when its lock-free stack is empty, the client need 
only signal the semaphore when it pushes a request onto 
an empty stack. The pop-all stack's push operation indic-
ates when it has pushed onto an empty stack.

5.1.4. Receiving results from the server: result queues

Each stream has its own  result queue,  an object  com-
prising a lock-free  queue and  a book-keeping counter. 
Results are only enqueued onto result queues by the I/O 
server,  and dequeued (polled)  by the stream that  owns 
the result queue. The streaming algorithms do not require 
replies  to  be  returned in order,  so the queue does not 
need  to  guarantee  delivery  order.  We  use  a  lock-free 
single-producer  single-consumer  (SPSC) relaxed-order 
queue. It  can be implemented similarly to the reversed 
queue from the previous section, with reversing omitted.

A result queue maintains a count of expected results. 
The client increments the count when it sends a request 
that expects a reply, and decrements the count when the 
result is received. When the count drops to zero no fur-
ther  results  are  expected.  (Note  that  this  scheme pre-
cludes requests with optional replies.)

We embed result queues directly in Request objects. 
Result queues only use one or two words of storage, and 
hence can be stored in the request-type-specific paramet-
er area of a Request. This lets us allocate result queues 
using the  real-time-safe  global  Request  freelist  and  to 
send and receive them as messages. The latter feature is 
used by the result queue clean-up process described later.

5.1.5. The server process

The server waits (blocks) on a semaphore until new re-
quests are posted to its queue. Received requests are pro-
cessed sequentially in FIFO order.

In order to manage the lifetime of native file handles, 
the server  associates a reference count with each open 
file. The count is incremented when the server returns a 
file  handle to the client  in response to  OPEN_FILE,  and 
whenever the server  returns  a  block to the client.  The 
count  is  decremented  on  CLOSE_FILE and  whenever  a 
block is received from the client. The native file handle 
is closed when the reference count drops to zero.

https://groups.google.com/d/msg/lock-free/i0eE2-A7eIA/g745KEEx2JIJ
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5.2. Client streams
We now present the client stream data structure and its 
life cycle: creation, maintenance, and destruction.

5.2.1. Client stream data structures

All client stream data structures are built by linking to-
gether  Request  objects.  Request  object  allocation  and 
deallocation  is  real-time-safe.  So  too  is  allocation  and 
deallocation of stream data structures.

A fully constructed stream is illustrated in Figure 4. A 
stream comprises a result queue Request (for receiving 
results from the server), an OPEN_FILE Request (which is 
transformed to CLOSE_FILE when closing the stream), and 
zero or more block Requests linked into a tail-queue that 
serves as the stream's prefetch buffer. A stream is refer-
enced by client code as an opaque pointer (handle). In-
ternally the pointer points to the result queue.

Figure 4: A fully constructed stream using linked Re-
quest objects. Each solid rectangle is a Request.

In addition to the result queue, OPEN_FILE Request and 
prefetch  queue,  a  stream maintains  the following state 
variables:

• The  overall  state  of  the  stream;  one  of:  {OPENING, 
OPEN_IDLE,  OPEN_BUFFERING,  OPEN_STREAMING,  ER-
ROR}.

• A count of pending blocks (those that have been reques-
ted but not yet returned to the stream).

• An index that tracks how much data has been copied to 
or from the front-most data block.

These  state  variables  are  stored  in  unused  and  cli-
ent-use Request fields.

5.2.2. Creating and opening a stream

To create and open a stream, the client first creates two 
Request objects: a result queue and an OPEN_FILE request. 
The  OPEN_FILE request  is sent  to the server,  specifying 
the result queue as its return address. The stream state is 
set to OPENING, and an opaque stream pointer that points 
to the result queue is returned to the client. Some time 
later the OPEN_FILE request is returned in the result queue. 
When the stream gains control it dequeues the result and 
handles it as follows:

• If the OPEN_FILE request was successful, it is linked to 
the result queue. It contains the file handle that will be 
used for all block requests. The stream state is set to 
OPEN_BUFFERING and the prefetch queue pointers are 
cleared to indicate that the prefetch queue is empty.

• If  the  OPEN_FILE Request  failed,  the  error  result  is 
copied to the result queue's error field, the stream state 
is set to ERROR, and the Request object is deallocated.

5.2.3. Maintaining the prefetch queue

The prefetch queue is represented using a singly-linked 
tail queue. A tail queue affords constant-time insertion at 
the back and constant-time removal from the front. The 
queue is formed from pending and completed READ_BLOCK 
or ALLOCATE_WRITE_BLOCK requests (see Figure 4).

The reading or writing process works by copying data 
from or to the front-most block in the prefetch queue. A 
numeric field in the front-most block request is used to 
track how much data has been copied so far. Once the 
process has finished with a block, the block is returned to 
the server and a new block is requested and inserted at 
the back of the queue. Block requests are linked into the 
queue as soon as they are created.

The  block  request's  request  type  field  is  also  used 
(overloaded) to track the state of each data block. The 
block state is one of: {PENDING,  READY,  MODIFIED,  ER-
ROR}.  The  request  type  (READ_BLOCK or  ALLOCATE_-
WRITE_BLOCK) denotes the  PENDING state.  When  a  re-
quest's reply is received from the server, the block's state 
is set to READY or ERROR. The MODIFIED state is used to 
determine whether a recording stream should  COMMIT or 
RELEASE the block.

In its simplest form, seeking clears the prefetch queue, 
returns all acquired blocks to the server, and issues READ 
or ALLOCATE block requests starting at the new seek posi-
tion.  Care  must be  taken with  PENDING requests  since 
they are yet to arrive in the result queue. They can be re-
moved from the prefetch queue if flagged “return to the 
server on arrival.”

Operations  on  the  prefetch  queue  also  affect  the 
stream's global state. If the streaming process finds that 
the front-most block is PENDING, it signals an underflow 
condition  and  causes  the  stream  state  to  be  set  to 
OPEN_BUFFERING.  The  stream  state  is  set  back  to 
OPEN_STREAMING when all pending blocks have been re-
ceived  (this  condition  is  detected  using  the  pending 
blocks  count).  The  BUFFERING and  STREAMING states 
support  behaviour  that  suspends  playback  while  the 
stream is  buffering.  If  the  prefetch  buffer  is  correctly 
sized, the  BUFFERING state should only be encountered 
immediately after seeking.

5.2.4. Destroying a stream

To destroy a  stream, all  resources  associated  with the 
stream must be released. The destruction process needs 
to account for the case where Requests are in flight when 
the client instigates stream destruction. For example, the 
stream may be waiting for the reply to an OPEN_FILE re-
quest  or  to  one  or  more  READ_BLOCK requests.  In  these 
cases the result queue can not be destroyed until all res-
ults have been received. Then once received, results must 
be cleaned up: a file handle returned by OPEN_FILE must 
be closed, blocks acquired by READ_BLOCK or  ALLOCATE_-
WRITE_BLOCK must be released.
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The stream destruction algorithm makes use of three 
facts: (1) each request that returns a resource has a de-
terministic clean-up procedure, (2) the result queue can 
be  sent  as  a  message  to  the  server,  and  (3)  the  result 
queue includes a counter indicating the number of replies 
that it is expecting. The counter makes it possible to de-
termine when the result queue has received all  replies, 
and hence when it can be safely destroyed.

Destruction of a stream that is in any of the  OPEN_... 
states involves the following algorithm:

Algorithm: destroying an open stream.
1. [Handle block requests in the prefetch queue.] For each 

block request in the stream's prefetch queue: If the block 
request is  READY or  MODIFIED, transform the block re-
quest into a RELEASE or COMMIT message respectively, and 
send the request to the server (the server will release or 
commit the block). Discard references to PENDING block 
requests, they have yet to arrive in the result queue and 
will be cleaned up later. Deallocate requests in the  ER-
ROR state directly to the global freelist.

2. [Close the open file  handle.] Transform the  OPEN_FILE 
request into a CLOSE_FILE and send it to the server.

3. [Dispose the result queue.] If the result queue's expected 
result count is zero, deallocate the result queue's contain-
ing Request object to the global freelist. Otherwise, send 
the result queue to the server using a newly defined mes-
sage type: CLEANUP_RESULT_QUEUE resultQueue  ◦⇀  
This  message  delegates  responsibility  for  cleaning  up 
any pending requests to the server (see next section). ∎

Destruction of a stream in the OPENING state sends the 
result queue request to the server as a CLEANUP_RESULT_-
QUEUE request. Destruction of a stream in the ERROR state 
deallocates the result queue Request object to the global 
freelist.

5.2.5. Server processing of CLEANUP_RESULT_QUEUE

When  the  server  receives  a  CLEANUP_RESULT_QUEUE re-
quest it pops any queued results from the result queue. 
For each popped result it decrements the result queue's 
expected result count and performs the result's compens-
ating  operation  (e.g.  OPEN_FILE transforms  to CLOSE_-
FILE,  READ_BLOCK transforms to  RELEASE_READ_BLOCK). If 
the result queue's expected result count is zero, the result 
queue  is  deallocated.  Otherwise,  the  result  queue  is 
marked with an  awaiting  clean-up flag.  Subsequently, 
whenever the server completes a request, it checks the 
result  queue's  flag.  If  the  flag  is  set,  rather  than  en-
queueing the reply, the server decrements the expected 
result  count and performs the compensating operation. 
Once the expected result count drops to zero the result 
queue is deallocated to the global freelist.

The result queue clean-up process ensures that all re-
sources  associated  with  a  stream are  released.  It  also 
provides  a  non-blocking  real-time-safe  mechanism for 
destroying streams. As the result queue is itself a Request 
object, the CLEANUP_RESULT_QUEUE message can always be 
issued. It cannot fail due to failure to allocate a Request.

6. DISCUSSION AND FUTURE WORK 
The presented algorithms for real-time stream operations 
have  time  complexity  of  either  O(1)  or  O(N)  in  the 
length of the prefetch queue. Strategies can be devised to 
reduce  the  cost  to  O(1)  by  moving  responsibility  for 
prefetch queue creation and tear-down to the I/O server.

Ideally the protocol would not require Request objects 
to be allocated or  deallocated while the stream is run-
ning.  Request allocation and transport overhead can be 
reduced by altering the protocol to allow requests to be 
reused.  Methods to achieve this include: always return 
results,  provide  messages  that  perform multiple  opera-
tions (e.g.  read N blocks), and combine messages (e.g. 
combine RELEASE_BLOCK and READ_BLOCK into a single Re-
quest).

The protocol described in section 4 does not commu-
nicate the file length or audio data format information to 
the client stream. If needed, this information can be com-
municated as additional results from OPEN_FILE.

As presented,  the  method does  not  reliably support 
multiple real-time streams.  The seek process  injects  N 
consecutive  READ_BLOCK operations  into  the  I/O  server 
queue. These operations may delay more urgent opera-
tions that are enqueued later.  To address this, assign a 
deadline to each request and have the server perform op-
erations in earliest-deadline-first (EDF) order.

The performance of the lock-free queues used here are 
sufficient  for  the  expected  contention  rate.  In  a  high-
throughput scenario other lock-free and wait-free queue 
algorithms should be considered.

Some messages involve shared access to the Request 
object by both client and server. This does not result in 
any data races since access is limited to disjoint fields in 
each thread. It does however introduce the possibility of 
false-sharing.  It  would be interesting to investigate the 
impact of false-sharing on protocol performance.

We  have  omitted  discussion  of  handling  formatted 
sound files (.wav, .aiff, .mp3, etc.).  One way to handle 
formatted sound files is for the I/O server thread to per-
form formatted I/O using an existing sound file I/O lib-
rary.  Alternatively, the I/O server could be extended to 
implement sound file container parsing and audio format 
conversion.

This paper has presented a simplified model of a real-
time file streaming system currently under development 
by the author. The system under development is designed 
to support multi-threaded access to streaming file I/O for 
a  multi-core-capable  real-time  audio  engine.  Beyond 
what has been presented here, the system supports cach-
ing  and  sharing  file  handles  and  data  blocks  amongst 
multiple client streams. Requests may be prioritised, re-
prioritised and cancelled. Multiple native I/O operations 
may be queued to the operating system concurrently. The 
system supports parsing sound file containers and trans-
parent data format conversion. All of this is achieved us-
ing an asynchronous messaging model similar to the one 
presented here.
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7. RELATED WORK
I/O has been an important aspect of computing from the 
beginning.  Knuth  (1997)  surveys  early  work  and  de-
scribes I/O using linked chains of buffer descriptors.

Operating system kernels use queues of linked I/O re-
quests (Comer 2011). Windows NT's I/O request packets  
(Russinovich et al. 2012) have their origins dating back 
at  least  to  DEC's  RSX11  operating  system  (Pellegrini 
and Cutler 1974).  The Parameter Block API of Mac OS 
Classic (Apple 1985)  is  an asynchronous file  I/O  API 
that entails enqueueing parameter blocks (requests) to be 
processed asynchronously by the operating system.

Fixed-size  I/O  data  blocks  are  commonly used  for 
device-independent kernel interfaces (Tanenbaum 2001). 
Pai and colleagues (2000) conducted an extensive study 
of models for exchanging I/O buffers. Brustoloni (1997) 
provides a useful taxonomy of buffer sharing models.

The  solution  described  here  is  an  instance  of  the 
“Half-Sync/Half  Async”  design  pattern  (Schmidt  and 
Cranor 1995), with the variation that clients do not block 
if data is unavailable.  Asynchronous message queueing 
and fixed size allocation pools are standard  techniques 
in real-time systems development (Douglass 2003).

For a gentle introduction to lock-free algorithms, see 
(Michael 2013). The Synthesis operating system kernel is 
notable  for  its  use  of  lock-free  data  structures  for 
queueing (Massalin and Pu 1992). The lock-free pop-all 
LIFO and reverse IBM freelist described in this paper, 
were  encountered  on  the  comp.programming.threads 
newsgroup during 2005-2008. Participants included Joe 
Seigh, Chris Thomasson and Dmitry Vyukov.

Lock-free ring buffers are used for transferring audio 
data  and  messages  in  real-time  audio  applications, 
primarily as a means to avoid priority inversion, as in for 
example PortAudio (Bencina and Burk 2001). Lock-free 
techniques for  computer music systems were discussed 
by Fober and colleagues (2002). A concrete example of 
use is James McCartney's SuperCollider 3 synthesis serv-
er, scsynth (2002). See (Bencina 2011) for an analysis of 
the message passing techniques in scsynth. Another ap-
plication  of  lock-free  techniques in  computer  music is 
Shelton's real-time live coding environment (2011). 

 Anderson and colleagues (1997) describe a real-time 
video conferencing application using a scheme of lock-
free queues for inter-thread communication. That public-
ation  is  notable  for  its  analysis  of  the  hard-real-time- 
safety of lock-free queues on a uniprocessor. A related 
analysis is given by (Cho 2006). The author is not aware 
of similar analysis for multi-processor systems.
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