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In the &sign of VLSI circuits to implement digital 
filters for electronic music purposes, we have 
found it useful to encode the filter coefficients. 
Such encoding offers three advantages. First, the 
encoding can be made to correspond more 
properly to the "natural" perceptual units of 
audio. While these are most accurately the "bark" 
for frequency and the "sone" for loudness, a 
good working approximation is decibels and 
musical octaves respectively. Secondly, our 
encoding scheme allows for partial decoupling of 
the pole radius and angle, providing superior 
interpolation characteristics when the coefficients 
are dynamically swept. Thirdly, and perhaps 
most importantly, appropriate encoding of the 
coefficients can save substantial amounts of on- 
chip memory. While audio filter coefficients 
typically require twenty or more bits, we have 
found adequate coverage at as few as eight bits, 
allowing for a much more cost effective custom 
hardware implementation when many coefficients 
are required. We have named the resulting 
patented encoding scheme "ARh4Adillo." 

Our implementation of digital audio filters is 
based on the canonical second order section 
whose transfer function should be familiar to all: 

1*-1*-2 
H(Z) = +blz-1+b,z-2 [I1 

While dealing with poles and feedback (bn) 
coefficients, the comments herein apply as well to 
zeroes and feedforward coefficients (an/@) when 
the gain (a@ is separated as shown above. 

Noting that the height of a resonant peak in the 
magnitude response produced by a pole is 
approximately inversely proportional to the 
distance from the pole to the unit circle, we can 
relate the height p of this resonant peak in dB to 
the pole radius R: 

1 
1-R p -- 20 log10 - [2] 

To accomplish our purpose of ia coefficient 
encoding which will be linear in p w e  encode b2 
in a variable k2 which varies from 0 to 1 1 : 

Noting that b2 = R 2 for complex poles, and 
relying on the fact that for significant resonance 
both R and b2 will be near unity, we can derive: 

p = 20 log10 1 
1 - I T 3  

but note that for small e, fi = 1 - E, so: 
2 

Simplifying: 
p = 8.68 k2 +6.02 

thus demonstrating k2 will indeed approximate a 
decibel encoding of the filter resonance to heights 
of about 100 dB with the chosen range. Note that 
the approximations break down for k2 near 0, but 
that its span guarantees access to the entire stable 
span of b2 and R. 

In practice, we use an octave shift encoding 
scheme to reduce the exponential decoding to a 
few logic gates and a barrel shifter. The errors 
introduced by such a scheme are in the 
neighborhood of f l  dB. 

We similarly encode coefficient b l  to linearly 
represent musical octaves of frequency. Because, 
for complex poles, b l  depends on both the radius 
R and the angle e, our encoding scheme uses our 
previously defined variable k2 to reduce this 
mutual dependency as well as further optimizing 
the encoding efficiency. We encode b l  using a 
new variable kl which varies from 0 to 11: 

To show that kl is indeed approximately linear in 
musical octaves for the filters of interest, we must 
define the "musical octave number" Q varying 
from zero to ten which is logarithmic in resonant 
frequency based on the pole angle 9 and sample 
rate Fs: 

R = log2 
40 x 

Because the majority of the audio band is in the 
lower octaves, we can use approximations which 
rely on small 8. From the fact that for complex 
poles bl  = -2 R cose, we can derive: 

F,acos-bl 
ZVb2 R = log2 

40 x 



Substituting our encoded variables kl and k2: 
1 - - 2e-k1 

Since for small E, = 1 - E and 1 = 1+&: 
2 1 -E 

F,acos(( 1 - d2 - 2e-k9( 1 + e)) 
40 x n log2 

Applying that for small E, e2 = 0: 

Fsacos( 1 - 2e-k9 
40 x n = log2 

Noting that for small E, acos(1-e) = G. 

Fs14e-k1 
40 x n = log2 

Manipulating the logarithms, we find (for 
Fs40kHz): 

We have thus shown k l  is seen to be linearly 
related to frequency expressed in musical octaves. 

The final proof of the encoding scheme lies in the 
effectiveness of the implementation used with 
"real" filters. We have found a useful graphical 
analysis tool to be the plot of the poles translating 
the radii from R to R and the angles 0 to 8' 
(excluding all e below dl024 = 20 Hz) such that: 

R = 2010g1- 1 
1-R 

and 

x( lO+log2Q) 
8'= 

10 

Such a plot maps the poles onto a nominally 
log/log semicircle, and even coefficient density 
indicates an even perceptual mapping. 

Figure 1 shows such a plot of unencoded 
coefficients, and Figure 2 shows a plot at the 
same coefficient quantization using ARMAdillo 
encoded coefficients. For interest, Figure 3 
shows the encoded coefficients plotted in the 

traditional polar plot, showing the high coefficient 
density at the low frequencies and high 
resonances, as well as explaining our peculiar 
name for the scheme. 

The physical implementation in a VLSI circuit 
confirms the success of the method. It linearly 
interpolates the coefficients in the encoded space 
at the sample rate; the resulting dynamic filters are 
smoothly controllable over a wide range with a 
pleasing perceptual mapping. 
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